摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现。

本文分享自华为云社区《[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽运算》,作者: eastmount。

本篇文章继续深入,结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现。

一.图像顶帽运算

图像顶帽运算(top-hat transformation)又称为图像礼帽运算,它是用原始图像减去图像开运算后的结果,常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像顶帽运算是用一个结构元通过开运算从一幅图像中删除物体,校正不均匀光照的影响,其效果图如下图所示。

在Python中,图像顶帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_TOPHAT表示顶帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

  • src表示原始图像
  • cv2.MORPH_TOPHAT表示图像顶帽运算
  • kernel表示卷积核,可以用numpy.ones()函数构建

假设存在一张光照不均匀的米粒图像,如图所示,我们需要调用图像顶帽运算解决光照不均匀的问题。其Python代码如下所示:

#encoding:utf-8
import cv2
import numpy as np
#读取图片
src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((10,10), np.uint8)
#图像顶帽运算
result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如下,它有效地将米粒与背景分离开来。

二.图像黑帽运算

图像底帽运算(bottom-hat transformation)又称为图像黑帽运算,它是用图像闭运算操作减去原始图像后的结果,从而获取图像内部的小孔或前景色中黑点,也常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像底帽运算是用一个结构元通过闭运算从一幅图像中删除物体,常用于校正不均匀光照的影响。其效果图如下图所示。

在Python中,图像底帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_BLACKHAT表示底帽或黑帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

  • src表示原始图像
  • cv2.MORPH_BLACKHAT表示图像底帽或黑帽运算
  • kernel表示卷积核,可以用numpy.ones()函数构建

Python实现图像底帽运算的代码如下所示:

#encoding:utf-8
import cv2
import numpy as np
#读取图片
src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((10, 10), np.uint8)
#图像黑帽运算
result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如图所示:

三.基于灰度三维图的顶帽黑帽运算

为什么图像顶帽运算会消除光照不均匀的效果呢?通常可以利用灰度三维图来进行解释该算法。灰度三维图主要调用Axes3D包实现,对原图绘制灰度三维图的代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
#读取图像
img = cv.imread("test06.png")
img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
imgd = np.array(img) #image类转numpy
#准备数据
sp = img.shape
h = int(sp[0]) #图像高度(rows)
w = int(sp[1]) #图像宽度(colums) of image
#绘图初始处理
fig = plt.figure(figsize=(16,12))
ax = fig.gca(projection="3d")
x = np.arange(0, w, 1)
y = np.arange(0, h, 1)
x, y = np.meshgrid(x,y)
z = imgd
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)
#自定义z轴
ax.set_zlim(-10, 255)
ax.zaxis.set_major_locator(LinearLocator(10)) #设置z轴网格线的疏密
#将z的value字符串转为float并保留2位小数
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# 设置坐标轴的label和标题
ax.set_xlabel('x', size=15)
ax.set_ylabel('y', size=15)
ax.set_zlabel('z', size=15)
ax.set_title("surface plot", weight='bold', size=20)
#添加右侧的色卡条
fig.colorbar(surf, shrink=0.6, aspect=8)
plt.show()

运行结果如下图所示:

从图像中的像素走势显示了该图受各部分光照不均匀的影响,从而造成背景灰度不均现象,其中凹陷对应图像中灰度值比较小的区域。而通过图像白帽运算后的图像灰度三维图的代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
#读取图像
img = cv.imread("test06.png")
img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
#图像黑帽运算
kernel = np.ones((10,10), np.uint8)
result = cv.morphologyEx(img, cv.MORPH_BLACKHAT, kernel)
#image类转numpy
imgd = np.array(result)
#准备数据
sp = result.shape
h = int(sp[0]) #图像高度(rows)
w = int(sp[1]) #图像宽度(colums) of image
#绘图初始处理
fig = plt.figure(figsize=(8,6))
ax = fig.gca(projection="3d")
x = np.arange(0, w, 1)
y = np.arange(0, h, 1)
x, y = np.meshgrid(x,y)
z = imgd
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)
#自定义z轴
ax.set_zlim(-10, 255)
ax.zaxis.set_major_locator(LinearLocator(10)) #设置z轴网格线的疏密
#将z的value字符串转为float并保留2位小数
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# 设置坐标轴的label和标题
ax.set_xlabel('x', size=15)
ax.set_ylabel('y', size=15)
ax.set_zlabel('z', size=15)
ax.set_title("surface plot", weight='bold', size=20)
#添加右侧的色卡条
fig.colorbar(surf, shrink=0.6, aspect=8)
plt.show()

效果图如下所示,对应的灰度更集中于10至100区间,由此证明了不均匀的背景被大致消除了,有利于后续的阈值分割或图像分割。

点击关注,第一时间了解华为云新鲜技术~

跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算的更多相关文章

  1. Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  2. Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

    摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...

  3. 跟我学Python图像处理丨何为图像的灰度非线性变换

    摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...

  4. 跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波

    摘要:本文讲解基于傅里叶变换的高通滤波和低通滤波. 本文分享自华为云社区<[Python图像处理] 二十三.傅里叶变换之高通滤波和低通滤波>,作者:eastmount . 一.高通滤波 傅 ...

  5. 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

    摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...

  6. 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

    摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪.图像增强等处理. 本文分享自华为云社区<[Python图像处理] 二十二.Python图像傅里叶变换原理及实现> ...

  7. 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效

    摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...

  8. 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  9. Python图像处理丨认识图像锐化和边缘提取的4个算子

    摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Rober ...

随机推荐

  1. 000 上传本地库到Github远程库过程全记录

    20220613 Github上新创建了一个CsImage库,之后本地创建了一个对应名称的目录,并创建本地库,进行了上传操作,记录一下过程 1.Github上CsImage库创建完成 Github上创 ...

  2. 一文澄清网上对 ConcurrentHashMap 的一个流传甚广的误解!

    大家好,我是坤哥 上周我在极客时间某个课程看到某个讲师在讨论 ConcurrentHashMap(以下简称 CHM)是强一致性还是弱一致性时,提到这么一段话 这个解释网上也是流传甚广,那么到底对不对呢 ...

  3. go-zero微服务实战系列(四、CRUD热热身)

    上一篇文章我们把整个项目的架子搭建完成,服务在本地也已经能运行起来了,顺利成章的接下来我们就应该开始写业务逻辑代码了,但是单纯的写业务逻辑代码是比较枯燥的,业务逻辑的代码我会不断地补充到 lerbon ...

  4. 16.Nginx优化与防盗链

    Nginx优化与防盗链 目录 Nginx优化与防盗链 隐藏版本号 修改用户与组 缓存时间 日志切割 小知识 连接超时 更改进程数 配置网页压缩 配置防盗链 配置防盗链 隐藏版本号 可以使用 Fiddl ...

  5. 12.web基础与HTTP协议

    web基础与HTTP协议 目录 web基础与HTTP协议 web基础 域名概述 HTML概述 HTML基本标签 HTML语法规则 HTML文件结构 头标签中常用标签 内容标签中常用标签 静态网页与动态 ...

  6. 有关安装pycocotools的办法

    1,首先需要安装Visual C++ 2015构建工具,地址https://download.microsoft.com/download/5/f/7/5f7acaeb-8363-451f-9425- ...

  7. 安装@parcel/transformer-image注意的问题

    安装前配置 npm config get cache 键入以上命令即可找到npm缓存路径,然后找到路径下的_libvips文件夹. 一般需要以下两个文件,这里以win环境为例.把文件放到_libvip ...

  8. ServletContext 对象

    概念:代表整个Web应用 可以和程序的容器通信 (服务器) 获取 通过request对象获取  request.getServletContext(); 通过HTTPServlet获取  this.g ...

  9. 数据库 OLAP、OLTP是什么?相同和不同?适用场景

    一.OLTP和OLAP是什么,二者比较 人类世界遵从基本的物理规律,数据世界里,关于数据的操作处理,也大体分为OLTP和OLAP两类. OLTP on-line transaction process ...

  10. Homebrew安装(macos)

    参照大佬的博客文章:https://zhuanlan.zhihu.com/p/111014448 OSX 将下面命令复制到终端执行 /bin/zsh -c "$(curl -fsSL htt ...