Matlab中K-means聚类算法的使用(K-均值聚类)
K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小。
使用方法:
Idx=Kmeans(X,K)
[Idx,C]=Kmeans(X,K)
[Idx,C,sumD]=Kmeans(X,K)
[Idx,C,sumD,D]=Kmeans(X,K)
[…]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…)
各输入输出参数介绍:
X N*P的数据矩阵
K 表示将X划分为几类,为整数
Idx N*1的向量,存储的是每个点的聚类标号
C K*P的矩阵,存储的是K个聚类质心位置
sumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和
D N*K的矩阵,存储的是每个点与所有质心的距离
[…]=Kmeans(…,'Param1',Val1,'Param2',Val2,…)
这其中的参数Param1、Param2等,主要可以设置为如下:
1. ‘Distance’(距离测度)
‘sqEuclidean’ 欧式距离(默认时,采用此距离方式)
‘cityblock’ 绝度误差和,又称:L1
‘cosine’ 针对向量
‘correlation’ 针对有时序关系的值
‘Hamming’ 只针对二进制数据
2. ‘Start’(初始质心位置选择方法)
‘sample’ 从X中随机选取K个质心点
‘uniform’ 根据X的分布范围均匀的随机生成K个质心
‘cluster’ 初始聚类阶段随机选择10%的X的子样本(此方法初始使用’sample’方法)
matrix 提供一K*P的矩阵,作为初始质心位置集合
3. ‘Replicates’(聚类重复次数) 整数;
'emptyaction'(空簇处理方法):'drop'
使用案例:
data=
5.0 3.5 1.3 0.3 -1
5.5 2.6 4.4 1.2 0
6.7 3.1 5.6 2.4 1
5.0 3.3 1.4 0.2 -1
5.9 3.0 5.1 1.8 1
5.8 2.6 4.0 1.2 0
[Idx,C,sumD,D]=Kmeans(data,3,'dist','sqEuclidean','rep',4)
运行结果:
Idx =
1
2
3
1
3
2
C =
5.0000 3.4000 1.3500 0.2500 -1.0000
5.6500 2.6000 4.2000 1.2000 0
6.3000 3.0500 5.3500 2.1000 1.0000
sumD =
0.0300
0.1250
0.6300
D =
0.0150 11.4525 25.5350
12.0950 0.0625 3.5550
29.6650 5.7525 0.3150
0.0150 10.7525 24.9650
21.4350 2.3925 0.3150
10.2050 0.0625 4.0850
Matlab中K-means聚类算法的使用(K-均值聚类)的更多相关文章
- Python聚类算法之基本K均值实例详解
Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...
- 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...
- 模式识别之聚类算法k-均值---k-均值聚类算法c实现
//写个简单的先练习一下,测试通过 //k-均值聚类算法C语言版 #include <stdlib.h> #include <stdio.h> #inc ...
- 【Python机器学习实战】聚类算法(1)——K-Means聚类
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...
- 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...
- ML: 聚类算法R包-K中心点聚类
K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值, ...
- K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- [聚类算法] K-means 算法
聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为 ...
- 第十三篇:K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- 简单易学的机器学习算法—基于密度的聚类算法DBSCAN
简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别. ...
随机推荐
- 网易云课堂_程序设计入门-C语言_期末考试编程题
1 字数统计(10分) 题目内容: 你的程序要读入一篇英文文章,然后统计其中的单词数来输出.需要统计的数据为: 总的单词数量: 含有1个字母到10个字母的单词的数量. 单词和单词的间隔是由以下标点符号 ...
- KVC在定义Model类中的妙用
@我们应用程序使用MVC架构的话,对于处理数据类,我们会单独的定义Model类,在里面为要展示的属性进行初始化赋值,一般採用的方法是通过定义相应的属性,挨个赋值.如今我要介绍的就是通过KVC,key- ...
- 重写系统中的UINavigationController 返回按钮的事件
.扩展UIviewController UIViewController+BackButtonHandler.h #import <UIKit/UIKit.h> @protocol Bac ...
- UITabBarController 笔记(二) ViewController中加UITabBarController
新建一个简单视图iOS工程,在ViewController的viewDidLoad中代码如下 - (void)viewDidLoad { [super viewDidLoad]; // Do any ...
- ListView实现上拉下拉刷新加载功能
第一步.首先在你项目中创建一个包存放支持下拉刷新和上拉加载的类:
- 谁能告诉我为什么sum_area输出总是0(多边形重心问题)
多边形重心问题 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描述 在某个多边形上,取n个点,这n个点顺序给出,按照给出顺序将相邻的点用直线连接, (第一个和最后一个连接 ...
- [一道搜狗输入法的面试题]C++转换构造函数和类型转换函数
今天面试遇到一道有关C++转换构造函数的题目,之前经常见到默认构造函数.拷贝构造函数.析构函数,但是从没听说过转换构造函数,隐式转换函数也是一样,C++的确是够博大精深的,学习之路很长啊! 其实我们已 ...
- 修改host文件的P处理
notepad C:\WINDOWS\system32\drivers\etc\hosts 用文档创建hosts文件,添加上面代码.把文件后缀修改为 .bat 就不用每次很麻烦的查找host文件了.
- struts2笔记01-环境搭建
1.官网下载struts2 struts-2.3.28-all.zip,这个包可谓应有尽有,以后全靠它了! 2.jar包怎么选? (1)struts-2.3.28-all\struts-2 ...
- hdu 4059 The Boss on Mars 容斥
题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我 ...