传送门

强行安利->巨佬题解

如果只有一个点贡献答案,那么答案显然是这棵树的带权重心,这个是可以\(O(n)\)求的.一个\(O(n^2)\)暴力是枚举两个集合之间的分界边,然后对这两个集合分别算答案,合并更新

考虑优化此过程,一个结论是一棵树内,只有\(size_i*2>size_{root}\)的点才有可能成为带权重心,并且这一类点个数不超过2个 不会证啊qwq,感性理解一下吧.所以每次枚举是哪条边为分界线,然后把树分成两部分,从每个树的根开始算答案,如果\(size_i*2\le size_{root}\)就停止

注意要扣除下面子树对上面子树的\(size\)的贡献再做

更多细节详见代码

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5) using namespace std;
const int N=50000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],hd[N],tot=1;
il void add(int x,int y)
{
++tot,to[tot]=y,nt[tot]=hd[x],hd[x]=tot;
++tot,to[tot]=x,nt[tot]=hd[y],hd[y]=tot;
}
int n,fa[N],sz[N],de[N],g[N],fc[N],sc[N],no,ans=1<<30;
void dfs(int x)
{
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==fa[x]) continue;
fa[y]=x,de[y]=de[x]+1,dfs(y),sz[x]+=sz[y],g[x]+=g[y]+sz[y];
if(sz[fc[x]]<=sz[y]) sc[x]=fc[x],fc[x]=y;
else if(sz[sc[x]]<sz[y]) sc[x]=y;
}
}
void cal(int x,int nw,int size,int &an)
{
an=min(an,nw);
int y=sz[fc[x]]<sz[sc[x]]||fc[x]==no?sc[x]:fc[x];
if(sz[y]*2>size) cal(y,nw-sz[y]+size-sz[y],size,an);
}
void work(int x)
{
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y!=fa[x])
{
no=y;
for(int xx=x;xx;xx=fa[xx]) sz[xx]-=sz[y];
int aa=1<<30,bb=1<<30;
cal(1,g[1]-g[y]-de[y]*sz[y],sz[1],aa),cal(y,g[y],sz[y],bb);
for(int xx=x;xx;xx=fa[xx]) sz[xx]+=sz[y];
ans=min(ans,aa+bb);
work(y);
}
}
} int main()
{
n=rd();
for(int i=1;i<n;i++) add(rd(),rd());
for(int i=1;i<=n;i++) sz[i]=rd();
dfs(1),work(1);
printf("%d\n",ans);
return 0;
}

luogu P2726 [SHOI2005]树的双中心的更多相关文章

  1. BZOJ3302: [Shoi2005]树的双中心

    BZOJ3302: [Shoi2005]树的双中心 https://lydsy.com/JudgeOnline/problem.php?id=3302 分析: 朴素算法 : 枚举边,然后在两个连通块内 ...

  2. 【BZOJ3302】[Shoi2005]树的双中心 DFS

    [BZOJ3302][Shoi2005]树的双中心 Description Input 第一行为N,1<N<=50000,表示树的节点数目,树的节点从1到N编号.接下来N-1行,每行两个整 ...

  3. 题解-SHOI2005 树的双中心

    SHOI2005 树的双中心 给树 \(T=(V,E)(|V|=n)\),树高为 \(h\),\(w_u(u\in V)\).求 \(x\in V,y\in V:\left(\sum_{u\in V} ...

  4. 【BZOJ】3302: [Shoi2005]树的双中心 && 2103: Fire 消防站 && 2447: 消防站

    [题意]给定带点权树,要求选择两个点x,y,满足所有点到这两个点中较近者的距离*点权的和最小.n<=50000,h<=100. [算法]树的重心 [题解]代码参考自:cgh_Andy 观察 ...

  5. 【洛谷 P2726】 [SHOI2005]树的双中心(树的重心)

    先考虑一个\(O(N^2)\)做法. 设选的两个点为\(x,y\),则一定可以将树分成两个集合\(A,B\),使得\(A\)集合所有点都去\(x\),\(B\)集合所有点都去\(y\),而这两个集合的 ...

  6. [SHOI2005]树的双中心

    题目链接:Click here Solution: 首先我们要知道,选择两个点\(A,B\),必定存在一条边,割掉这条边,两个集合分别归\(A,B\)管 再结合题目,我们就得到了一个暴力的\(n^2\ ...

  7. bzoj 3302&2447&2103 树的双中心 树形DP

    题目: 题解: bzoj 3302 == 2447 == 2103 三倍经验 首先我们考虑枚举两个中心的位置,然后统计答案. 我们发现,一定有一部分点离第一个中心更近,另一部分点离第二个中心更近 如果 ...

  8. Luogu 2590 [ZJOI2008]树的统计 / HYSBZ 1036 [ZJOI2008]树的统计Count (树链剖分,LCA,线段树)

    Luogu 2590 [ZJOI2008]树的统计 / HYSBZ 1036 [ZJOI2008]树的统计Count (树链剖分,LCA,线段树) Description 一棵树上有n个节点,编号分别 ...

  9. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

随机推荐

  1. Delphi下EasyGrid使用体会

    最近在编写软件的时候,非常需要一款支持多表头的StringGrid控件,朋友介绍使用EasyGrid控件,这款控件大概从04年开始就没有再更新,网上有关与它的资料也较少.但是通过其demo,此软件还是 ...

  2. Quartz.NET 前一次任务未执行完成时不触发下次的解决方法

    如图所示,在Job 上 加     [DisallowConcurrentExecution]        特性

  3. BZOJ4530[Bjoi2014]大融合——LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...

  4. MyBatis在表名作为参数时遇到的问题

    之前在用MyBatis的时候没用过表名作为参数,最近使用到了. 基于注释使用MyBatis的Dao层代码如下: @Repository public interface Base1102Dao { @ ...

  5. day22 time模块

    表示方式有三种 时间戳 给机器看的 float格式 格式化的字符传 给人看的 格式化时间 元祖 计算用的 结构化时间 1 # 时间戳时间 2 # 返回一个时间戳,表示从1970.1.1日到现在的秒数 ...

  6. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

  7. MT【38】与砝码有关的两个题

    此题只适合1%的优秀学生阅读: 北京大学2017中学生数学奖个人能力挑战赛第四题(最后一题) 解析:第一问: 第二问,略,答案也是147. 类似的: 评:1.北大的题用了2进制,后面的这题用了三进制, ...

  8. 【ZOJ2278】Fight for Food(dp)

    BUPT2017 wintertraining(16) #4 F ZOJ - 2278 题意 给定一个10*10以内的地图,和p(P<=30000)只老鼠,给定其出现位置和时间T(T<=1 ...

  9. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  10. 数据挖掘(二)用python实现数据探索:汇总统计和可视化

    今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处 ...