mapreduce的一个模版
import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /**
* map就是把key先分出来。系统会自己主动把同样key的value放到一个iterator里面,reduce就是去处理key和已经归并好的iterator
*/
public class Template extends Configured implements Tool { /**
* 计数器
* 用于计数各种异常数据
*/
enum Counter
{
LINESKIP, //出错的行
} /**
* MAP任务
*/
public static class Map extends Mapper<LongWritable, Text, Text, Text> //输入的key(详细是什么由job.setInputFormatClass决定),输入的value,输出的key,输出的value
{
public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException
{
String line = value.toString(); //读取源数据 try
{
//数据处理
String [] lineSplit = line.split(" ");
String anum = lineSplit[0];
String bnum = lineSplit[1]; context.write( new Text(bnum), new Text(anum) ); //输出
}
catch ( java.lang.ArrayIndexOutOfBoundsException e )
{
context.getCounter(Counter.LINESKIP).increment(1); //出错令计数器+1
return;
}
}
} /**
* REDUCE任务
*/
public static class Reduce extends Reducer<Text, Text, Text, Text>
{
public void reduce ( Text key, Iterable<Text> values, Context context ) throws IOException, InterruptedException
{
String valueString;
String out = ""; for ( Text value : values )
{
valueString = value.toString();
out += valueString + "|";
} context.write( key, new Text(out) );
}
} @Override
public int run(String[] args) throws Exception
{
Configuration conf = getConf(); Job job = new Job(conf, "Test_2"); //任务名
job.setJarByClass(Test_2.class); //指定Class FileInputFormat.addInputPath( job, new Path(args[0]) ); //输入路径
FileOutputFormat.setOutputPath( job, new Path(args[1]) ); //输出路径 job.setMapperClass( Map.class ); //调用上面Map类作为Map任务代码
job.setReducerClass ( Reduce.class ); //调用上面Reduce类作为Reduce任务代码,没有这行就调用默认的reduce
job.setOutputFormatClass( TextOutputFormat.class );
job.setOutputKeyClass( Text.class ); //指定输出的KEY的格式
job.setOutputValueClass( Text.class ); //指定输出的VALUE的格式 job.waitForCompletion(true); //输出任务完毕情况
System.out.println( "任务名称:" + job.getJobName() );
System.out.println( "任务成功:" + ( job.isSuccessful()? "是":"否" ) );
System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() );
System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() );
System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() ); return job.isSuccessful() ? 0 : 1;
} /**
* 设置系统说明
* 设置MapReduce任务
*/
public static void main(String[] args) throws Exception
{ //推断參数个数是否正确
//假设无參数执行则显示以作程序说明
if ( args.length != 2 )
{
System.err.println("");
System.err.println("Usage: Test_2 < input path > < output path > ");
System.err.println("Example: hadoop jar ~/Test_2.jar hdfs://localhost:9000/home/james/Test_2 hdfs://localhost:9000/home/james/output");
System.err.println("Counter:");
System.err.println("\t"+"LINESKIP"+"\t"+"Lines which are too short");
System.exit(-1);
} //记录開始时间
DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" );
Date start = new Date(); //执行任务
int res = ToolRunner.run(new Configuration(), new Test_2(), args); //输出任务耗时
Date end = new Date();
float time = (float) (( end.getTime() - start.getTime() ) / 60000.0) ;
System.out.println( "任务開始:" + formatter.format(start) );
System.out.println( "任务结束:" + formatter.format(end) );
System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); System.exit(res);
}
}
mapreduce的一个模版的更多相关文章
- mapreduce中一个map多个输入路径
package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; imp ...
- 导出Excel(导出一个模版)
有时,客户需要一个标准的模板来填东西,然后在导入 这时可以弄好excel模板,供导出 /** * 导出excel模板文件 * @param request * @param response * @r ...
- MapReduce: 一个巨大的倒退
前言 databasecolumn 的数据库大牛们(其中包括PostgreSQL的最初伯克利领导:Michael Stonebraker)最近写了一篇评论当前如日中天的MapReduce 技术的文章, ...
- 使用mapreduce计算环比的实例
最近做了一个小的mapreduce程序,主要目的是计算环比值最高的前5名,本来打算使用spark计算,可是本人目前spark还只是简单看了下,因此就先改用mapreduce计算了,今天和大家分享下这个 ...
- MapReduce剖析笔记之八: Map输出数据的处理类MapOutputBuffer分析
在上一节我们分析了Child子进程启动,处理Map.Reduce任务的主要过程,但对于一些细节没有分析,这一节主要对MapOutputBuffer这个关键类进行分析. MapOutputBuffer顾 ...
- 04 MapReduce原理介绍
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序 定义 * Mapreduce 最早是由googl ...
- Linux上搭建Hadoop2.6.3集群以及WIN7通过Eclipse开发MapReduce的demo
近期为了分析国内航空旅游业常见安全漏洞,想到了用大数据来分析,其实数据也不大,只是生产项目没有使用Hadoop,因此这里实际使用一次. 先看一下通过hadoop分析后的结果吧,最终通过hadoop分析 ...
- Hadoop学习笔记—4.初识MapReduce
一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来 ...
- MapReduce剖析笔记之二:Job提交的过程
上一节以WordCount分析了MapReduce的基本执行流程,但并没有从框架上进行分析,这一部分工作在后续慢慢补充.这一节,先剖析一下作业提交过程. 在分析之前,我们先进行一下粗略的思考,如果要我 ...
随机推荐
- VS中Debug模式和Release模式的区别
一.Debug 和 Release 编译方式的本质区别 Debug 通常称为调试版本,它包含调试信息,并且不作任何优化,便于程序员调试程序.Release 称为发布版本,它往往是进行了各种优化,使得程 ...
- EasyMvc入门教程-基本控件说明(5)小图标
我们网页很多时候需要小图标来进行美化,EasyMvc默认提供了100多种常用小图标,您可以根据实际情况选择使用,请看下面的例子: @Html.Q().Ico().Type(EasyMvcHelper. ...
- Spark Streaming的样本demo统计
废话不多说,直接上代码 package com.demo; import java.util.List; import java.util.regex.Pattern; import org.apac ...
- HTML5 Canvas 绘制星条旗
代码: <!DOCTYPE html> <html lang="utf-8"> <meta http-equiv="Content-Type ...
- java类中,成员变量赋值第一个进行,其次是静态构造函数,再次是构造函数
如题是结论,如果有人问你Java类的成员初始化顺序和初始化块知识就这样回答他.下面是代码: package com.test; public class TestClass{ // 成员变量赋值第一个 ...
- Cocos2d-x学习笔记(四) 布景层的加入移除
布景层类也就是CCLayer类,每一个游戏场景中都能够有非常多层,每一层负责各自的任务.显示地图.显示人物等.同一时候层还是一个容器,能够放入文本.图片和菜单.构成游戏中一个个UI.这次将学习在场景中 ...
- Win7如何获得TrustedInstaller权限
将下面的信息保存为启用TakeOwnership.reg,双击注册即可 Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\*\sh ...
- 王立平--eclipse中改动android项目的版本
改动版本 1.右键-->properties 2.android.改动须要的版本 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzQyNTU ...
- HDU 3461 Code Lock(并查集的应用+高速幂)
* 65536kb,仅仅能开到1.76*10^7大小的数组. 而题目的N取到了10^7.我開始做的时候没注意,用了按秩合并,uset+rank达到了2*10^7所以MLE,所以貌似不能用按秩合并. 事 ...
- myql5.7.7优化配置參数
# Other default tuning values # MySQL Server Instance Configuration File # ------------------------- ...