DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner

DWA算法第一次提出应该是1997年,发在了《IEEE Robotics and Automation Magazines》上

路径规划算法主要包括全局路径规划和局部路径规划。局部路径规划主要用于动态环境下的导航和避障,对于无法预测的障碍物DWA算法可以较好地解决。DWA算法的优点是计算负复杂度较低,由于考虑到速度和加速度的限制,只有安全的轨迹会被考虑,且每次采样的时间较短,因此轨迹空间较小。采样的速度即形成了一个动态窗口

对于轨迹的评价函数主要包括三个方面:与目标的接近程度、机器人前进的速度、与下一个障碍物的距离。简而言之就是在局部规划出一条路径,希望与目标越来越近,且速度较快,与障碍物尽可能远。评价函数权衡以上三个部分得到一条最优路径。

该论文相对于之前的创新点在于:

  • 该方法是由一个移动机器人的运动动力学推导出来的
  • 考虑到机器人的惯性(代码中计算了刹车距离),这对于具有扭矩限制机器人在高速行驶时很重要。
  • 在动态杂乱环境中速度可以较快,对于速度较快的机器人以及低电动机转矩的机器人较为实用。

相关工作

该部分作者说明了全局路径规划的优点在于计算时可以离线进行,但是目前ROS中全局路径也在导航过程中不断变化。缺点在于不能适应环境变化以及计算复杂度太高,尤其是环境不断变化时。局部路径规划的缺点在于不能保证得到最优解,容易陷入局部最优(如U形障碍环境)。优点在于计算速度快,适合环境不断变化。

对比了其他的局部路径规划算法的优缺点,势场法计算速度很快,但是在狭窄区域会产生震荡,如果目标点在两个很近的障碍物之间,则可能找不到路径。

同步传动机器人运动学方程

为了使运动学方程更加接近实际,将模型的速度设为随时间变化的分段函数,在该假设下,机器人轨迹可看做许多的圆弧积分组成,采用该方法使得障碍物碰撞检测很方便,因为圆弧与障碍物的交点很好求。

$令x(t)$,$y(t)$,$\theta(t)$分别表示机器人在$t$时刻的x坐标、y坐标以及朝向角,$x(t_0)$和$x(t_n)$分别表示机器人在$t_0$和$t_1$时刻的x坐标,令$v(t)$表示机器人的平移速度。

$$x(t_n)=x(t_0)+\int_{t_0}^{t_n}v(t)*cos\theta (t)dt \tag{1}$$

$$y_(t_n)=y(t_0)+\int_{t_0}^{t_n}v(t)*sin\theta (t)dt \tag{2}$$

等式(1)和等式(2)取决于机器人的速度,但机器人速度不能直接设定。机器人速度$v(t)$取决于初始时刻$t_0$的速度以及时间$t_0$、机器人在时间间隔$\hat{t}\in [t_0,t]$的平移加速度$\dot{v}(\hat{t})$。同样的,$\theta(t)$也是初始转向角$\theta(t_0)$函数(设$t_0$时刻的初始旋转速度为$w(t_0)$,$\hat{t}\in [t_0,t]$的旋转加速度为$\dot{w}(\hat{t})$,则式(1)可写为:

$$x(t_n)=x(t_0)+\int_{t_0}^{t_n}\left(v(t_0)+\int_{t_0}^{t}\dot{v}(\hat{t})d\hat{t}\right)*cos\left (\theta (t_0)+\int_{t_0}^{t}\left((w(t_0)+\int_{t_0}^{\bar{t}}\dot{w}(\widetilde{t})d\widetilde{t}\right)d\widetilde{t}\right )dt\tag{3}$$

此时机器人的轨迹由初始时刻的状态以及加速度决定,可以认为这些状态是可控的,同时由于机器人内部结构原因,其加速度也不是一直变化(类似于连续函数),因此可以将$t_0$到$t_n$看作是很多个时间片,积分可以转换为求和,假设有n个时间片,在每个时间片$[t_i,t_{i+1}]$,机器人的加速度$\dot{v_i}$和$\dot{w}$保持不变,设$\Delta_t^i=t-t_i$则式(3)可以转化为:

$$x(t_n)=x(t_0)+\sum_{i=0}^{n-1}\int_{t_i}^{t_{i+1}}\left (v(t_i)+\dot{v_i}*\Delta_t^i\right )*cos\left (\theta(t_i)+w(t_i)*\Delta_t^i+\frac{1}{2}\dot{w_i}*(\Delta_t^i)^2\right )dt\tag{4}$$

等式(4)虽然与机器人的动力控制相关,但是不能决定机器人具体的驾驶方向,对于障碍物与机器人轨迹的交点也很难求出,继续进行简化,既然时间间隔都很小,因此可以假设在每一个时间片内速度保持不变,则$v(t_i)+\dot{v_i}*\Delta_t^i$可近似为$v_i\in[v(t_i),v(t_{i+1})]$,同理,$\theta(t_i)+w(t_i)*\Delta_t^i+\frac{1}{2}\dot{w_i}*(\Delta_t^i)^2$近似为$\theta (t_i)+w_i*\Delta_t^i$,其中$w(i)\in [w(t_i),w(t_{i+1}]$,则式(4)可写为:

$$x(t_n)=x(t_0)+\sum_{i=0}^{n-1}\int_{t_i}^{t_{i+1}}v_i*cos\left (\theta(t_i)+w_i*(\hat{t}-t_i) \right )d\hat{t}\tag{5}$$

解这个积分方程,简化为:

$$x(t_n)=x(t_0)+\sum_{i=0}^{n-1}F_x^i(t_{i+1})\tag{6}$$

其中:

$$F_x^i(t_{i})=
\left\{
\begin{array}{lr}
\frac{v_i}{w_i}\left (sin\theta(t_i)-sin\left (\theta(t_i)+w_i*(t-t_i) \right) \right),w_i\ne 0 \\
v_i cos\left(\theta(t_i)\right)*t,w_i=0 
\end{array}
\right.
\tag{7}$$

同理,对应的y坐标公式为:

$$y(t_n)=y(t_0)+\sum_{i=0}^{n-1}F_y^i(t_{i+1})\tag{8}$$

$$F_y^i(t_{i})=
\left\{
\begin{array}{lr}
-\frac{v_i}{w_i}\left (cos\theta(t_i)-cos\left (\theta(t_i)+w_i*(t-t_i) \right) \right),w_i\ne 0 \\
v_i sin\left(\theta(t_i)\right)*t,w_i=0 
\end{array}
\right.
\tag{9}$$

(推导了一遍总感觉式(7)和式(9)的第一项前面少了一个负号)

当$w_i=0$时,机器人行走轨迹为一条直线,当$w_i\ne =0$时,机器人轨迹为圆弧,设

$$M_x^i = -\frac{v_i}{w_i}*sin\theta(t_i)\tag{10}$$

$$M_y^i = \frac{v_i}{w_i}*cos\theta(t-i)\tag{11}$$

则:

$$(F_x^i-M_x^i)^2+(F_x^i-M_x^i)^2=(\frac{v_i}{w_i})^2\tag{12}$$

式(12)说明第i段圆弧轨迹的圆心为$(M_x^i,M_y^i)$,半径为$\frac{v_i}{w_i}$。

根据上述公式可以求出机器人的轨迹,即通过一系列分段的圆弧和直线来拟合轨迹。

误差上界:

将机器人轨迹进行分段会在控制点之间产生线性误差,即$t_{i+1}-t_i$之间的误差,设x坐标和y坐标的误差分别为$E_x^i$和$E_y^i$,$\Delta t_i=t_{i+1}-t_i$,由于$v_i\in [v(t_i),v(t_{i+1})]$,易知最大误差$E_x^i,E_y^i\leq|v(t_{i+1})-v(t_i)|*\Delta t_i$,在$\Delta t_i$内是线性的。注意该上界误差仅仅可用于机器人内部预测,而实际机器人位置一般通过里程计测量。

动态窗口法

动态窗口法在速度空间中进行速度采样,并对随机采样的速度进行限制,减小采样数目,在使用代价函数进行评价。

主要算法步骤如下

  1. 速度搜索空间,根据以下三点进行速度空间降采样

    • 圆弧轨迹:动态窗口法仅仅考虑圆弧轨迹,该轨迹由采样速度$(v,w)$决定,这些速度构成一个速度搜索空间。
    • 允许速度:如果机器人能够在碰到最近的障碍物之前停止,则该采样速度将被评估。
    • 动态窗口:由于机器人加速度的限制,因此只有在加速时间内能达到的速度才会被保留。
  2. 求最优值

   代价函数:

$$G(v,w)=\sigma\left(\alpha *heading(v,w)+\beta *dist(v,w)+\gamma *vel(v,w)\right)\tag{13}$$

   最大值即使最优值最大:

   (a)Target heading:heading用于评价机器人与目标位置的夹角,当机器人朝着目标前进时,该值取最大。

   (b)Clearance:dist 用于表示与机器人轨迹相交的最近的障碍物距离。

   (c) Velocity:vel 表示机器人的前向移动速度,支持快速移动。

    其中\sigma 使得三个部分的权重更加平滑,使得轨迹与障碍物之间保持一定的间隙。

安全的速度是指机器人能够在撞掉障碍物之前停下,$dist(v,w)$为机器人轨迹上与障碍物的最近距离,设刹车时的加速度为$\dot v_b$和$\dot w_b$,则$V_a$为机器人不与障碍物碰撞的速度集合:

$$V_a=\left\{v,w | v\leq\sqrt{2*dist(v,w)*\dot v_b } \cap w\leq \sqrt{2*dist(v,w)*\dot w_b} \right\}\tag{14}$$

考虑到机器人的动力加速度,搜索空间降采样到动态窗口,只保留以当前加速度可到达的速度,设$t$为时间间隔,$(v_a,w_a)$为实际速度,则动态窗口的速度集合为$V_d$:

$$V_d=\left\{v,w | v\in [v_a-\dot v*t,v_a+\dot v*t] \cap w\in [w_a-\dot w*t,w_a+\dot w*t ] \right\}\tag{15}$$

该集合以外的速度都不能在该时间间隔内达到。

综上,最终的搜索空间:

$$V_r=V_s\cap V_a\cap V_d\tag{16}$$

最终的代价函数(13)是基于速度$V_r$计算的。其中:

Target Heading:表示机器人与目标点的对齐程度,用$180-\theta$表示,$\theta$为机器人与目标夹角,夹角越大,代价值越小。

Clearance:表示与机器人轨迹相交的最近障碍物的距离,如果障碍物与机器人轨迹不相交,则设为一个较大的值。

Velocity:机器人某条轨迹的速度$v$。

平滑处理:

评价函数的三个部分都被正则化到$[0,1]$上,实验中设置了$\alpha = 2$,$\beta=0.2$,$\gamma=0.2$,平滑处理可以使机器人与障碍物之间有一定的间隙(裕度)。

实现细节:

  • 当机器人陷入局部最优时(即不存在路径可以通过),使其原地旋转,直到找到可行路径。
  • 安全裕度:在路径规划时,设定一安全裕度,即在路径和障碍物之间保留一定间隙,且该间隙随着速度增大线性增长。

参数设定:

  • $\alpha$占比重太大,机器人运动自由度大,窄的区域不容易通过,$\alpha$占比重太小,机器人轨迹则不够平滑。因此$\alpha$越大,越适合在窄区域,$\alpha$越小,越适合在宽区域。

DWA局部路径规划算法论文阅读:The Dynamic Window Approach to Collision Avoidance。的更多相关文章

  1. 机器人局部避障的动态窗口法(dynamic window approach) (转)

    源:机器人局部避障的动态窗口法(dynamic window approach) 首先在V_m∩V_d的范围内采样速度: allowable_v = generateWindow(robotV, ro ...

  2. ROS源码解读(一)--局部路径规划

    博客转载自:https://blog.csdn.net/xmy306538517/article/details/78772066 ROS局部路径导航包括Trajectory Rollout 和 Dy ...

  3. ros局部路径规划-DWA学习

    ROS的路径规划器分为全局路径和局部路径规划,其中局部路径规划器使用的最广的为dwa,个人理解为: 首先全局路径规划会生成一条大致的全局路径,局部路径规划器会把全局路径给分段,然后根据分段的全局路径的 ...

  4. move_base的 局部路径规划代码研究

    base_local_planner teb_local_planner parameter code g2o base_local_planner ROS wiki Given a plan to ...

  5. 路径规划: PRM 路径规划算法 (Probabilistic Roadmaps 随机路标图)

    随机路标图-Probabilistic Roadmaps (路径规划算法) 路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法如: 1. A* 2. Djstar 3. ...

  6. 基础路径规划算法(Dijikstra、A*、D*)总结

    引言 在一张固定地图上选择一条路径,当存在多条可选的路径之时,需要选择代价最小的那条路径.我们称这类问题为最短路径的选择问题.解决这个问题最经典的算法为Dijikstra算法,其通过贪心选择的步骤从源 ...

  7. 全局路径规划算法Dijkstra(迪杰斯特拉算法)- matlab

    参考博客链接:https://www.cnblogs.com/kex1n/p/4178782.html Dijkstra是常用的全局路径规划算法,其本质上是一个最短路径寻优算法.算法的详细介绍参考上述 ...

  8. RRT路径规划算法

    传统的路径规划算法有人工势场法.模糊规则法.遗传算法.神经网络.模拟退火算法.蚁群优化算法等.但这些方法都需要在一个确定的空间内对障碍物进行建模,计算复杂度与机器人自由度呈指数关系,不适合解决多自由度 ...

  9. RRT路径规划算法(matlab实现)

    基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的 ...

随机推荐

  1. GStreamer 1.18.4稳定的错误修复版本

    GStreamer 1.18.4稳定的错误修复版本GStreamer团队宣布最喜欢的跨平台多媒体框架的稳定的1.18版本系列中的另一个错误修复版本!此版本仅包含错误修复和重要的安全修复程序,并且从1. ...

  2. GPU编程和流式多处理器(七)

    6. 杂项说明 6.1. warp级原语 warp作为执行的原始单元(自然位于线程和块之间),重要性对CUDA程序员显而易见.从SM 1.x开始,NVIDIA开始添加专门针对thread的指令. Vo ...

  3. HLS后端示例

    HLS后端示例 TVM支持带有SDAccel的Xilinx FPGA板.这是有关如何将TVM部署到AWS F1 FPGA实例的文档. 此功能仍处于试验阶段.暂时无法使用SDAccel部署端到端神经网络 ...

  4. 升级 macOS Big Sur 差点丢了我多年的珍藏文件(夹)!!!

    原来升级 macOS Big Sur 过程中会转移根目录下的个人文件(夹). 春节期间升级了一下 macOS ,升级之前就比较担心丢数据,然而怕什么来什么.升级之后发现根目录下的个人文件(夹)都不见了 ...

  5. 九、Nginx常见问题处理

    优化Nginx并发量 优化软件进程数.优化软件最大并发连接数限制.优化内核连接数限制open files(临时和永久同时设置)   [root@proxy ~]# ab -n 2000 -c 2000 ...

  6. 【读书笔记】《C语言 从入门到精通》(第三版)笔记

    C语言,上学的时候都没学好,没想到现在却靠它吃饭.因为对C语言还是比较熟悉,所以买这本书是用来当"字典"用的.所以下面的笔记不会有很基础的内容. 1.书籍介绍 2.结构体 3.[C ...

  7. SpringCloud、Nginx高并发核心编程 【2020年11月新书 】

    文章太长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典极品 : 三大本< Java 高并发 三部曲 > 面试 + 大厂 + 涨薪必备 疯狂创客圈 经 ...

  8. .NET Core/.NET5/.NET6 开源项目汇总7:电商项目

    系列目录     [已更新最新开发文章,点击查看详细] 谈起.NET/.NET Core的企业级实战案例,电商项目是典型代表.其中高负载.高并发.高可用性等问题是考核.NET技术性能的重要指标.下面整 ...

  9. ZooKeeper分布式锁的实现

    ZooKeeper分布式锁的实现. 在分布式的情况下,sychornized 和 Lock 已经不能满足我们的要求了,那么就需要使用第三方的锁了,这里我们就使用 ZooKeeper 来实现一个分布式锁 ...

  10. 玩转STM32MP157- 使用fbtft驱动 lcd st7735r

    什么是fbtft fbtft 在 github 中的介绍是" Linux Framebuffer drivers for small TFT LCD display modules,翻译过来 ...