BZOJ_1008 越狱(快速幂)
http://www.lydsy.com/JudgeOnline/problem.php?id=1008
Description
监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
Input
输入两个整数M,N.1<=M<=10^8,1<=N<=10^12
Output
可能越狱的状态数,模100003取余
Sample Input
Sample Output
HINT
6种状态为(000)(001)(011)(100)(110)(111)
从题目里可以知道,N个房间M个宗教,可能产生的所有状态为A=N^M,要求出所有可能越狱的状态可能比较难,不如使用逆向思维,求所有不可能的越狱状态,可知只要相邻的房间宗教不同即可,故所有的不可能越狱状态为B=M*(M-1)*(M-1)...(M-1)=M*(M-1)^(N-1),那么答案就是A-B了,写个快速幂函数求出A,B即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
/*ll quickpower(ll m,ll n)//简写版本
{
if(n==0) return 1;
ll temp=quickpower(m,n>>1);// n>>1 == n/2 n的二进制右移几位就是除以2的n次方
temp=temp*temp%100003;
if(n&1) temp=temp*m%100003;// n&1也就是取n的二进制最低位,判断n是否为奇数,是则为1
return temp%100003;
}*/
ll quickpower(ll m,ll n)//更容易看懂的版本
{
if(n==0) return 1;
else
{
while((n&1)==0)
{
n>>=1;
m=m*m%100003;
}
}
int temp=m;
n>>=1;
while(n!=0)
{
m=m*m%100003;
if((n&1)!=0) temp=temp*m%100003;
n>>=1;
}
return temp;
}
int main()
{
ll m,n;
cin>>m>>n;
m%=100003;
ll ans=quickpower(m,n);
ans-=(m*quickpower(m-1,n-1))%100003;
cout<<(ans+100003)%100003<<endl;
return 0;
}
BZOJ_1008 越狱(快速幂)的更多相关文章
- [HNOI2008] 越狱 快速幂
[HNOI2008] 越狱 快速幂 水.考虑不发生越狱的情况:即宗教相同的都不相邻,一号任意放\(m\)种宗教的人,此后\(n-1\)个房间都放与上一个宗教不同的人,有\(m-1\)种,所以共有\(m ...
- BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ1008 [HNOI2008]越狱 快速幂
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...
- BZOJ 1008: [HNOI2008]越狱-快速幂/取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ 1008: [HNOI2008]越狱 快速幂
1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...
- bzoj1008/luogu3197 越狱 (快速幂)
算$m^n-m*(m-1)^{n-1}$,就是总的减去不越狱的,不越狱就每次都选一个和上一个不一样的
- bzoj1008 [HNOI2008]越狱——快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 (这样一道水题还因为忘记写 %lld WA了那么多遍) 发生越狱的状态数,就是全部状态 ...
- [HNOI2008]越狱 快速幂 逆推
考虑越狱的情况有些复杂,不如考虑总情况减去不越狱的情况. 显然,总情况为 $m^n$ 种,不越狱的情况为 $m*(m-1)*(m-1)*(m-1)....$ 即为 $m*(m-1)^(n-1)$. 做 ...
- BZOJ-1008 越狱 数论快速幂
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 6192 Solved: 2636 [Submit][Status] ...
- 【BZOJ】1008: [HNOI2008]越狱(快速幂)
http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...
随机推荐
- 超详细 Java 15 新功能介绍
点赞再看,动力无限.微信搜「程序猿阿朗 」,认认真真写文章. 本文 Github.com/niumoo/JavaNotes 和 未读代码博客 已经收录,有很多知识点和系列文章. Java 15 在 2 ...
- ES6继承和ES5继承是完全一样的么?
继承方式 ES5 prototype 继承 通过原型链(构造函数 + [[prototype]])指向实现继承. (备注:后续__proto__我都会写成[[prototype]]这种形式) 子类的 ...
- Golang语言系列-14-单元测试
单元测试 字符串切割函数 package split_string import ( "fmt" "strings" ) // Split:切割字符串 // e ...
- HTML5(十二)——一文读懂 WebSocket 原理
一.WebSocket 由来 WebSocket 是一个持久化的协议,通过第一次 HTTP Request 建立连接之后,再把通信协议升级成 websocket,保持连接状态,后续的数据交换不需要再重 ...
- STM32—驱动DHT11数字温湿度传感器
文章目录 DHT11模块简介 DHT11数据传输 DHT11通信时序 代码实现 相关引脚初始化 复位模块 判断响应模块 读取数据包模块 DHT11模块简介 DHT11数字温湿度传感器,用来测量环境的温 ...
- 【力扣leetcode】-787. K站中转内最便宜的航班
题目描述: 有 n 个城市通过一些航班连接.给你一个数组 flights ,其中 flights[i] = [fromi, toi, pricei] ,表示该航班都从城市 fromi 开始,以价格 p ...
- Linux从头学08:Linux 是如何保护内核代码的?【从实模式到保护模式】
作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...
- C# 如何在编译时将 dll 复制到 bin\Release 目录下
下面假设 Project 名为 Gamma4RTD,需要调用的 dll 文件为 rtddll.dll.IDE 是 Visual Studio 2015 打开 Visual Studio 2015 -& ...
- asp.net core 常见知识点
- .Net 5 新特性之--支持字典在迭代中进行修改
我们都知道以前字典迭代中是不支持动态修改的[否则会报错::"Collection was modified; enumeration operation may not execute.&q ...