BZOJ_1008 越狱(快速幂)
http://www.lydsy.com/JudgeOnline/problem.php?id=1008
Description
监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
Input
输入两个整数M,N.1<=M<=10^8,1<=N<=10^12
Output
可能越狱的状态数,模100003取余
Sample Input
Sample Output
HINT
6种状态为(000)(001)(011)(100)(110)(111)
从题目里可以知道,N个房间M个宗教,可能产生的所有状态为A=N^M,要求出所有可能越狱的状态可能比较难,不如使用逆向思维,求所有不可能的越狱状态,可知只要相邻的房间宗教不同即可,故所有的不可能越狱状态为B=M*(M-1)*(M-1)...(M-1)=M*(M-1)^(N-1),那么答案就是A-B了,写个快速幂函数求出A,B即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
/*ll quickpower(ll m,ll n)//简写版本
{
if(n==0) return 1;
ll temp=quickpower(m,n>>1);// n>>1 == n/2 n的二进制右移几位就是除以2的n次方
temp=temp*temp%100003;
if(n&1) temp=temp*m%100003;// n&1也就是取n的二进制最低位,判断n是否为奇数,是则为1
return temp%100003;
}*/
ll quickpower(ll m,ll n)//更容易看懂的版本
{
if(n==0) return 1;
else
{
while((n&1)==0)
{
n>>=1;
m=m*m%100003;
}
}
int temp=m;
n>>=1;
while(n!=0)
{
m=m*m%100003;
if((n&1)!=0) temp=temp*m%100003;
n>>=1;
}
return temp;
}
int main()
{
ll m,n;
cin>>m>>n;
m%=100003;
ll ans=quickpower(m,n);
ans-=(m*quickpower(m-1,n-1))%100003;
cout<<(ans+100003)%100003<<endl;
return 0;
}
BZOJ_1008 越狱(快速幂)的更多相关文章
- [HNOI2008] 越狱 快速幂
[HNOI2008] 越狱 快速幂 水.考虑不发生越狱的情况:即宗教相同的都不相邻,一号任意放\(m\)种宗教的人,此后\(n-1\)个房间都放与上一个宗教不同的人,有\(m-1\)种,所以共有\(m ...
- BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ1008 [HNOI2008]越狱 快速幂
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...
- BZOJ 1008: [HNOI2008]越狱-快速幂/取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ 1008: [HNOI2008]越狱 快速幂
1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...
- bzoj1008/luogu3197 越狱 (快速幂)
算$m^n-m*(m-1)^{n-1}$,就是总的减去不越狱的,不越狱就每次都选一个和上一个不一样的
- bzoj1008 [HNOI2008]越狱——快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 (这样一道水题还因为忘记写 %lld WA了那么多遍) 发生越狱的状态数,就是全部状态 ...
- [HNOI2008]越狱 快速幂 逆推
考虑越狱的情况有些复杂,不如考虑总情况减去不越狱的情况. 显然,总情况为 $m^n$ 种,不越狱的情况为 $m*(m-1)*(m-1)*(m-1)....$ 即为 $m*(m-1)^(n-1)$. 做 ...
- BZOJ-1008 越狱 数论快速幂
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 6192 Solved: 2636 [Submit][Status] ...
- 【BZOJ】1008: [HNOI2008]越狱(快速幂)
http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...
随机推荐
- Linux常见问题解决方案
1.Kali2020添加BCM43142的网卡驱动 来源:https://www.fujieace.com/kali-linux/wifi-drive.html 我只是执行了第三步:安装网卡驱动,即: ...
- etcd学习(6)-etcd实现raft源码解读
etcd中raft实现源码解读 前言 raft实现 看下etcd中的raftexample newRaftNode startRaft serveChannels 领导者选举 启动并初始化node节点 ...
- cmseasy&内网渗透 Writeup
某CTF内网渗透 题目:www.whalwl.site:8021 目录 cmseasy 内网横向渗透 cmseasy 简单看一下网站架构 Apache/2.4.7 (Ubuntu) PHP/5.5.9 ...
- CVE-2021-21978 VMware View Planner 远程代码执行漏洞通告 | 附 POC
漏洞简介 VMware 是一家云基础架构和移动商务解决方案厂商,View Planner 是他旗下推出的一款针对view桌面的测试工具.2021年03月02日,VMware 官方披露了 CVE-202 ...
- innodb是如何存数据的?yyds
前言 如果你使用过mysql数据库,对它的存储引擎:innodb,一定不会感到陌生. 众所周知,在mysql8以前,默认的存储引擎是:myslam.但mysql8之后,默认的存储引擎已经变成了:inn ...
- 定时执行的任务Quartz.net
- js中使用function定义类、实例化,函数的调用方法
function Test002(name, age){ name, age, this.printInfo = function(){ //定义的公有方法 console.log(name, age ...
- GIT基础篇,配置账号及命令查看以及帮助命令
提交用户名和邮件地址 1 安装完Git首先要设置你的用户名称与邮件地址.每一个Git的提交都会使用这些信息,并且它会写入到你的每一次提交中. 2 git config --global user. ...
- 04.SpringMVC之用
分析 Spring MVC 是怎么处理请求的.首先分析 HttpServletBean.FrameworkServlet 和 DispatcherServlet 这三个 Servlet 的处理过程,最 ...
- Int 2e 与 Sysenter区别
参考:张银奎<软件调试>第八章 Int 2e: Windows将2e号向量专门用作系统调用,在启动早起初始化中断描述表时便注册好了适合的服务例程.因此当NtDll中的NtReadFile发 ...