Max-Mahalanobis Linear Discriminant Analysis Networks
@article{pang2018max-mahalanobis,
title={Max-Mahalanobis Linear Discriminant Analysis Networks},
author={Pang, Tianyu and Du, Chao and Zhu, Jun},
pages={4013--4022},
year={2018}}
概
本文介绍了从最大化马氏距离的角度提出了一种defense.
主要内容
对于俩个分布来说, 区分样本属于哪一个分布, 最好的分类器就是贝叶斯分类, 特别的, 如果是高斯分布, 且协方差矩阵一致, 则其分类平面为
\]
其中
\]
\]
特别的, 当\(\Sigma\)为对角矩阵的时候, 其分类平面只与\(\mu_1-\mu_2\)有关.
设一个混合高斯分布:
\]
并定义
\]
因为神经网络强大的拟合分布能力, 我们可以假设\(\Sigma=I\)(文中将\Sigma$分解, 然后用变量替换可以得到, 马氏距离在此情况下具有不变性, 我觉得不如直接这么解释比较实在).
设想, 从第i个分布中采样\(x_{(i)} \sim \mathcal{N}(\mu_i, I)\), 将\(x_{(i)}\)移动到与\(j\)类的分类平面的距离设为\(d_{(i,j)}\),
定理: 如果\(\pi_i=\pi_j\), 则\(d_{(i,j)}\)的期望为
\]
其中\(\Phi\)表示正态分布函数.
注意, 这里的\(d_{i,j}\)是\(x\)到分类平面的距离, 也就是说, 如果\(x_{(i)}\)如果本身就位于别的类中, 同样也计算这个距离, 不公平, 当然如果这么考虑, 证明起来就相当麻烦了.
如果定义
\]
则我们自然希望\(\mathrm{RB}\)越大越好(越鲁棒, 但是根据我们上面的分析, 这个定义是存在瑕疵的). 然后通过导数, 进一步发现
\]
有定理:

所以, 作者的结论就是, 最后一层
\]
满足\((4)\), 为此作者设计了一个算法

去构造. 所以, 这最后一层的参数是固定不训练的. 余下的与普通的网络没有区别.
Max-Mahalanobis Linear Discriminant Analysis Networks的更多相关文章
- 线性判别分析(Linear Discriminant Analysis,LDA)
一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD) ...
- 线性判别分析(Linear Discriminant Analysis, LDA)算法分析
原文来自:http://blog.csdn.net/xiazhaoqiang/article/details/6585537 LDA算法入门 一. LDA算法概述: 线性判别式分析(Lin ...
- 线性判别分析(Linear Discriminant Analysis, LDA)算法初识
LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discrimin ...
- 机器学习: Linear Discriminant Analysis 线性判别分析
Linear discriminant analysis (LDA) 线性判别分析也是机器学习中常用的一种降维算法,与 PCA 相比, LDA 是属于supervised 的一种降维算法.PCA考虑的 ...
- Linear Discriminant Analysis Algorithm
线性判别分析算法. 逻辑回归是一种分类算法,传统上仅限于两类分类问题. 如果有两个以上的类,那么线性判别分析算法是首选的线性分类技术.LDA的表示非常直接.它包括数据的统计属性,为每个类计算.对于单个 ...
- 线性判别分析(Linear Discriminant Analysis)转载
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- 线性判别分析(Linear Discriminant Analysis)
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- [ML] Linear Discriminant Analysis
虽然名字里有discriminat这个字,但却是生成模型,有点意思. 判别式 pk 生成式 阅读:生成方法 vs 判别方法 + 生成模型 vs 判别模型 举例: 判别式模型举例:要确定一个羊是山羊还是 ...
- Linear Discriminant Analysis
Suppose that we model each class density as multivariate Gaussian, in practice we do not know the pa ...
随机推荐
- 断言(assert)简介
java中的断言assert的使用 一.assertion的意义和用法 J2SE 1.4在语言上提供了一个新特性,就是assertion功能,他是该版本再Java语言方面最大的革新. 从理论上来说,通 ...
- 【leetcode】451. Sort Characters By Frequency
Given a string s, sort it in decreasing order based on the frequency of the characters. The frequenc ...
- ehcache详解
Ehcache是现在最流行的纯Java开 源缓存框架,配置简单.结构清晰.功能强大,最初知道它,是从Hibernate的缓存开始的.网上中文的EhCache材料以简单介绍和配置方法居多, 如果你有这方 ...
- 【Java基础】方法调用机制——MethodHandle
MethodHandle是Java7引入的一种机制,主要是为了JVM支持动态语言. 一个MethodHandle调用示例 共有方法调用 首先,演示一下最基本的MethodHandle使用. 第一步:创 ...
- mybatis的dao层和service层的编码设计的配置
/** 书写pojo类------>dao接口------>resources下建立同路径的dao.xml------>配置applicationContext.xml文件 **/ ...
- 通过Jedis操作Redis
package com.yh; import org.junit.After; import org.junit.Before; import org.junit.Test; import redis ...
- shell脚本 阿里云基线检查一键配置
一.简介 源码地址 日期:2017/9/1 介绍:安全加固脚本,会符合阿里云基线检查.有幂等性,可重复执行 效果图: 二.使用 适用:centos6/7 语言:中文 注意:脚本是符合阿里云基线检查的配 ...
- [BUUCTF]PWN7——[OGeek2019]babyrop
[BUUCTF]PWN7--[OGeek2019]babyrop 题目网址:https://buuoj.cn/challenges#[OGeek2019]babyrop 步骤: 例行检查,32位,开启 ...
- ASP.NET VS 调试提示:指定的端口正在使用中,建议切换到xxx之外并大于1024的端口
问题描述 使用 Visual Studio 开发 ASP.NET 网站的过程中,突然提示端口被占用: 解决方式 在启动项目上右键→属性,切换到 Web .直接修改服务器栏目里面的端口号,解决!
- CF46B T-shirts from Sponsor 题解
Content 有一家服装店,有 \(\texttt{S}\) 码的衣服 \(n_S\) 件.\(\texttt{M}\) 码的衣服 \(n_M\) 件,\(\texttt{L}\) 码的衣服 \(n ...