Max-Mahalanobis Linear Discriminant Analysis Networks
@article{pang2018max-mahalanobis,
title={Max-Mahalanobis Linear Discriminant Analysis Networks},
author={Pang, Tianyu and Du, Chao and Zhu, Jun},
pages={4013--4022},
year={2018}}
概
本文介绍了从最大化马氏距离的角度提出了一种defense.
主要内容
对于俩个分布来说, 区分样本属于哪一个分布, 最好的分类器就是贝叶斯分类, 特别的, 如果是高斯分布, 且协方差矩阵一致, 则其分类平面为
\]
其中
\]
\]
特别的, 当\(\Sigma\)为对角矩阵的时候, 其分类平面只与\(\mu_1-\mu_2\)有关.
设一个混合高斯分布:
\]
并定义
\]
因为神经网络强大的拟合分布能力, 我们可以假设\(\Sigma=I\)(文中将\Sigma$分解, 然后用变量替换可以得到, 马氏距离在此情况下具有不变性, 我觉得不如直接这么解释比较实在).
设想, 从第i个分布中采样\(x_{(i)} \sim \mathcal{N}(\mu_i, I)\), 将\(x_{(i)}\)移动到与\(j\)类的分类平面的距离设为\(d_{(i,j)}\),
定理: 如果\(\pi_i=\pi_j\), 则\(d_{(i,j)}\)的期望为
\]
其中\(\Phi\)表示正态分布函数.
注意, 这里的\(d_{i,j}\)是\(x\)到分类平面的距离, 也就是说, 如果\(x_{(i)}\)如果本身就位于别的类中, 同样也计算这个距离, 不公平, 当然如果这么考虑, 证明起来就相当麻烦了.
如果定义
\]
则我们自然希望\(\mathrm{RB}\)越大越好(越鲁棒, 但是根据我们上面的分析, 这个定义是存在瑕疵的). 然后通过导数, 进一步发现
\]
有定理:

所以, 作者的结论就是, 最后一层
\]
满足\((4)\), 为此作者设计了一个算法

去构造. 所以, 这最后一层的参数是固定不训练的. 余下的与普通的网络没有区别.
Max-Mahalanobis Linear Discriminant Analysis Networks的更多相关文章
- 线性判别分析(Linear Discriminant Analysis,LDA)
一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD) ...
- 线性判别分析(Linear Discriminant Analysis, LDA)算法分析
原文来自:http://blog.csdn.net/xiazhaoqiang/article/details/6585537 LDA算法入门 一. LDA算法概述: 线性判别式分析(Lin ...
- 线性判别分析(Linear Discriminant Analysis, LDA)算法初识
LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discrimin ...
- 机器学习: Linear Discriminant Analysis 线性判别分析
Linear discriminant analysis (LDA) 线性判别分析也是机器学习中常用的一种降维算法,与 PCA 相比, LDA 是属于supervised 的一种降维算法.PCA考虑的 ...
- Linear Discriminant Analysis Algorithm
线性判别分析算法. 逻辑回归是一种分类算法,传统上仅限于两类分类问题. 如果有两个以上的类,那么线性判别分析算法是首选的线性分类技术.LDA的表示非常直接.它包括数据的统计属性,为每个类计算.对于单个 ...
- 线性判别分析(Linear Discriminant Analysis)转载
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- 线性判别分析(Linear Discriminant Analysis)
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- [ML] Linear Discriminant Analysis
虽然名字里有discriminat这个字,但却是生成模型,有点意思. 判别式 pk 生成式 阅读:生成方法 vs 判别方法 + 生成模型 vs 判别模型 举例: 判别式模型举例:要确定一个羊是山羊还是 ...
- Linear Discriminant Analysis
Suppose that we model each class density as multivariate Gaussian, in practice we do not know the pa ...
随机推荐
- Learning Spark中文版--第六章--Spark高级编程(1)
Introduction(介绍) 本章介绍了之前章节没有涵盖的高级Spark编程特性.我们介绍两种类型的共享变量:用来聚合信息的累加器和能有效分配较大值的广播变量.基于对RDD现有的transform ...
- Vue 之keep-alive的使用,实现页面缓存
什么是keep-alive 有时候我们不希望组件被重新渲染影响使用体验: 或者处于性能考虑,避免多次重复渲染降低性能.而是希望组件可以缓存下来,维持当前的状态.这时候就需要用到keep-alive组件 ...
- JVM——对象已“死”的判定
主要针对Java堆和方法区 1.判断对象是否已"死" Java堆中存放着几乎所有的对象实例,垃圾回收器在对堆进行回收之前,首先应该判断这些对象哪些还"存活",哪 ...
- vue SCSS
C:\eclipse\wks\vue\esql-ui>node -v v12.18.1 C:\eclipse\wks\vue\esql-ui>npm -v 6.14.5 直接修改p ...
- oracle keep
语法: min | max(column1) keep (dense_rank first | last order by column2) over (partion by column3); -- ...
- Docker 安装 Oracle12c
为选定需要pull到系统中的数据库镜像 # docker pull sath89/oracle-12c --------sath89/oracle-12c为选定需要pull到系统中的数据库镜像 doc ...
- 解决 nginx: [error] invalid PID number "" in "/usr/local/nginx/logs/nginx.pid"
使用/usr/local/nginx/sbin/nginx -s reload 重新读取配置文件出错 [root@localhost nginx]/usr/local/nginx/sbin/nginx ...
- 【Linux】【Services】【Project】Haproxy Keepalived Postfix实现邮件网关Cluster
1. 简介: 1.1. 背景:公司使用exchange服务器作为邮件服务器,但是使用Postfix作为邮件网关实现病毒检测,内容过滤,反垃圾邮件等功能.原来的架构非常简单,只有两台机器,一个负责进公司 ...
- 【Spring Framework】spring管理自己new的对象
使用AutowireCapableBeanFactory手动注入 使用.newInstance();创建对象的话,如果其他对象都使用Spring Autowired,还需要手动创建所有依赖的Bean: ...
- 1945-祖安say hello-string
1 #include<bits/stdc++.h> 2 char str[100][40]; 3 char s[1005]; 4 5 int remark[2000][2] = { 0 } ...