Description

罗马皇帝很喜欢玩杀人游戏。 他的军队里面有n个人,每个人都是一个独立的团。最近举行了一次平面几何测试,每个人都得到了一个分数。 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻。他决定玩这样一个游戏。 它可以发两种命令: 1. Merger(i, j)。把i所在的团和j所在的团合并成一个团。如果i, j有一个人是死人,那么就忽略该命令。 2. Kill(i)。把i所在的团里面得分最低的人杀死。如果i这个人已经死了,这条命令就忽略。 皇帝希望他每发布一条kill命令,下面的将军就把被杀的人的分数报上来。(如果这条命令被忽略,那么就报0分)

Input

第一行一个整数n(1<=n<=1000000)。n表示士兵数,m表示总命令数。 第二行n个整数,其中第i个数表示编号为i的士兵的分数。(分数都是[0..10000]之间的整数) 第三行一个整数m(1<=m<=100000) 第3+i行描述第i条命令。命令为如下两种形式: 1. M i j 2. K i

Output

如果命令是Kill,对应的请输出被杀人的分数。(如果这个人不存在,就输出0)

Sample Input

5

100 90 66 99 10

7

M 1 5

K 1

K 1

M 2 3

M 3 4

K 5

K 4

Sample Output

10

100

0

66

很裸的一道左偏树的题,本来就是做来复习一下左偏树的。

然而却RE了。。。

左偏树通常都要和并查集连用,如何连用也是一个需要模板化的东西,我就在这上面挂了。

合并堆时,并查集这样改:

fa[fax]=fa[fay]=merge(fax,fay)

弹出堆顶元素时,并查集这样改才能避免RE:

fa[fax]=merge(le,ri);fa[fa[fax]]=fa[fax]

因为这个RE了好久,原来是因为在弹出堆顶元素之前,树中的元素的fa已经指向该对顶元素了,所以要将该元素的fa指向新生成的堆顶

完整代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=2000000+5; struct node{
int ls,rs;
int dis,key;
}t[N];
int n,m,fa[N];
bool kill[N]; int getfa(int x){
if(fa[x]==x) return x;
return fa[x]=getfa(fa[x]);
}
int merge(int x,int y){
if(x==0) return y;
if(y==0) return x;
if(t[x].key>t[y].key) swap(x,y);
t[x].rs=merge(t[x].rs,y);
if(t[t[x].ls].dis<t[t[x].rs].dis) swap(t[x].ls,t[x].rs);
t[x].dis=t[t[x].rs].dis+1;
return x;
}
int main(){
t[0].ls=t[0].rs=0;
t[0].dis=-1,t[0].key=0x3f3f3f3f;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&t[i].key);
fa[i]=i;
}
scanf("%d",&m);
char opt[2];
int x,y;
while(m--){
scanf("%s",opt);
if(opt[0]=='M'){
scanf("%d%d",&x,&y);
if(kill[x]||kill[y]) continue;
int fax=getfa(x),fay=getfa(y);
if(fax==fay) continue;
int tmp=merge(fax,fay);
fa[fay]=fa[fax]=tmp;
}
else{
scanf("%d",&x);
if(kill[x]){
printf("0\n");continue;
}
int fax=getfa(x);
printf("%d\n",t[fax].key);
kill[fax]=1;
int le=t[fax].ls,ri=t[fax].rs;
fa[fax]=merge(le,ri);
fa[fa[fax]]=fa[fax];
}
}
}

【bzoj1455】【罗马游戏】左偏树+并查集(模板)的更多相关文章

  1. [BZOJ1455]罗马游戏 左偏树+并查集

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 2285  Solved: 994[Submit][Status][Discuss] ...

  2. bzoj 1455: 罗马游戏 左偏树+并查集

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 668  Solved: 247[Submit][Status] Descriptio ...

  3. BZOJ1455 罗马游戏 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1455 题意概括 n个人,2种操作. 一种是合并两个人团,一种是杀死某一个人团的最弱的人. 题解 左 ...

  4. 洛谷 - P1552 - 派遣 - 左偏树 - 并查集

    首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...

  5. 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集

    https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...

  6. 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)

    1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...

  7. 1455: 罗马游戏[左偏树or可并堆]

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1861  Solved: 798[Submit][Status][Discuss] ...

  8. BZOJ 1455 罗马游戏 ——左偏树

    [题目分析] 左偏树的模板题目,大概就是尽量维护树的深度保持平衡,以及尽可能的快速合并的一种堆. 感觉和启发式合并基本相同. 其实并没有快很多. 本人的左偏树代码自带大常数,借鉴请慎重 [代码] #i ...

  9. BZOJ 1455 罗马游戏 左偏树

    题目大意:给定n个点,每一个点有一个权值,提供两种操作: 1.将两个点所在集合合并 2.将一个点所在集合的最小的点删除并输出权值 非常裸的可并堆 n<=100W 启示式合并不用想了 左偏树就是快 ...

随机推荐

  1. [uva 1350]数位dp+二分

    题目链接:https://vjudge.net/problem/38405 #include<bits/stdc++.h> using namespace std; ][]; ]; lon ...

  2. (转)详解HTML网页源码的charset格式

    关于HTML网页源码的字符编码(charset)格式(GB2312,GBK,UTF-8,ISO8859-1等)的解释 crifan http://www.crifan.com/summary_expl ...

  3. 五分钟搞懂Vuex

    这段时间一直在用vue写项目,vuex在项目中也会依葫芦画瓢使用,但是总有一种朦朦胧胧的感觉.于是决定彻底搞懂它. 看了一下午的官方文档,以及资料,才发现vuex so easy! 作为一个圈子中的人 ...

  4. 【SPOJ-QTREE3】树链剖分

    http://www.spoj.com/problems/QTREE3/ 时间限制:2s    代码长度限制:50000B     内存限制:1536MB [题目描述] 给出N个点的一棵树(N-1条边 ...

  5. 【CF1023E】Down or Right(交互,贪心)

    题意: n<=500 思路:From https://blog.csdn.net/csdnjiangshan/article/details/81813227 #include<cstdi ...

  6. Invalidation queue with "bit-sliceability"

    BACKGROUND, FEATURES In a computer system having more than one memory storage facility, a special da ...

  7. spin_lock浅析【转】

    转自:http://blog.csdn.net/frankyzhangc/article/details/6569475 版权声明:本文为博主原创文章,未经博主允许不得转载. 今天我们详细了解一下sp ...

  8. SSM+Maven的JavaWeb项目中的异常的可能性

    1.404 可能:1):被拦截了,即:springmvc中的controller可能不存在,可能没有被配置,可能配置出错 2):资源确实不存在 3):路径出错 2.500,程序异常,但是业务逻辑什么都 ...

  9. 搜索引擎--范例:谈谈django--mysql数据库的一些常用命令

    现在基本没有什么能离得开数据库了,django我一直用的都是mysql的数据库,这次和大家说说django--mysql数据库的一些常用命令吧 1:命令行登陆mysql C:\Users\Admini ...

  10. 微信支付http://www.cnblogs.com/True_to_me/p/3565039.html

    公众号支付有2种支付方式: JS API 支付:是指用户打开图文消息或者扫描二维码,在微信内置浏览器打开网页进行的支付.商户网页前端通过使用微信提供的 JS API,调用微信支付模块.这种方式,适合需 ...