POJ 开关问题 解题报告
开关问题
Time Limit: 1000MS Memory Limit: 30000K
Description
有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)
Input
输入第一行有一个数K,表示以下有K组测试数据。
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
Output
如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号
Sample Input
2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0
Sample Output
4
Oh,it's impossible~!!
Hint
第一组数据的说明:
一共以下四种方法:
操作开关1
操作开关2
操作开关3
操作开关1、2、3 (不记顺序)
参考lyd的算法竞赛进阶指南。
设\(a_{i,j}\)代表\(j\)操作后是否影响\(i\),\(x_i\)为第\(i\)个开关是否操作
\(\begin{bmatrix}
a_{1,1}*x_1 & xor & a_{1,2}*x_2 & ... & a_{1,n}*x_n & to_1 \\
a_{2,1}*x_1 & xor & a_{2,2}*x_2 & ... & a_{2,n}*x_n & to_2 \\
...\\
a_{n,1}*x_1 & xor & a_{n,2}*x_2 & ... & a_{n,n}*x_n & to_n \\
\end{bmatrix}\quad\)
异或就是不进位加法,我们参照着普通的高斯消元做就可以了
最后解的个数是1<<自由元的数量
用状态压缩存储一行状态,可以做到n^2
然而书中是这样写的
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
if(a[j]>a[i])
swap(a[j],a[i]);
if(a[i]==1) {ans=0;break;}
if(!a[i]) {ans=1<<n-i+1;break;}
for(int k=n;k;k--)
if(a[i]>>k&1)
for(int j=1;j<=n;j++)
if((i!=j)&&(a[j]>>k&1)) a[j]^=a[i];
}
而我强行
int r=n+1-i;
if(a[i]>>r&1)
for(int j=i+1;j<=n;j++)
if(a[j]>>r&1) a[j]^=a[i];
自然是wa掉啦,原因列指针并不一定等于行指针
不过这样就行啦(这时候ans不是答案,是自由元个数)
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
if(a[j]>a[i])
swap(a[j],a[i]);
if(a[i]==1) {ans=-1;break;}
if(!a[i]) {ans+=n-i+1;break;}
int r=n+1-i;
if(!(a[i]>>r&1)) ++ans;
for(int j=i+1;j<=n;j++)
if(a[j]>>r&1) a[j]^=a[i];
}
2018.8.29
POJ 开关问题 解题报告的更多相关文章
- POJ 2002 Squares 解题报告(哈希 开放寻址 & 链式)
经典好题. 题意是要我们找出所有的正方形.1000点,只有枚举咯. 如图,如果我们知道了正方形A,B的坐标,便可以推测出C,D两点的坐标.反之,遍历所有点作为A,B点,看C,D点是否存在.存在的话正方 ...
- 【原创】poj ----- 1182 食物链 解题报告
题目地址: http://poj.org/problem?id=1182 题目内容: 食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submi ...
- poj 2051.Argus 解题报告
题目链接:http://poj.org/problem?id=2051 题目意思:题目有点难理解,所以结合这幅图来说吧---- 有一个叫Argus的系统,该系统支持一个 Register 命令,输入就 ...
- poj 1102.LC-Display 解题报告
题目链接:http://poj.org/problem?id=1102 题目意思:就是根据给出的格式 s 和 数字 n,输出数值 n 的 LCD 显示.数值 n 的每个数字要占据 s + 2 列 和 ...
- poj 1363 Rails 解题报告
题目链接:http://poj.org/problem?id=1363 题意:有一列火车,车厢编号为1-n,从A方向进站,向B方向出站.现在进站顺序确定,给出一个出站的顺序,判断出站顺序是否合理. 实 ...
- POJ 1840 Eps 解题报告(哈希)
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0,xi∈[-50,50],且xi!=0.让我们求所有解的可能. 首先,如果暴力判断的话,每个x的取值有100种可能,100^5肯定 ...
- POJ 3159 Candies 解题报告(差分约束 Dijkstra+优先队列 SPFA+栈)
原题地址:http://poj.org/problem?id=3159 题意大概是班长发糖果,班里面有不良风气,A希望B的糖果不比自己多C个.班长要满足小朋友的需求,而且要让自己的糖果比snoopy的 ...
- poj 1201 Intervals 解题报告
Intervals Time Limit: 2000MS Memory Limit: 65536KB 64bit IO Format: %lld & %llu Submit Statu ...
- POJ P1741 Tree 解题报告
Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...
随机推荐
- 记6种php 加密解密方法
<?php function encryptDecrypt($key, $string, $decrypt){ if($decrypt){ $decrypted = rtrim(mcrypt_d ...
- [转]JavaScript中的匿名函数及函数的闭包
JavaScript中的匿名函数及函数的闭包 原文地址:http://www.cnblogs.com/wl0000-03/p/6050108.html 1.匿名函数 函数是JavaScript中最灵 ...
- C# 实现程序开机自启动
最近在做一个自动备份文件的小工具,需要用到开机自启动 下面是代码 private void checkBox8_CheckedChanged(object sender, EventArgs e) { ...
- Linux中的目录功能(Red Hat 7)
目录的基本功能: /bin:存放普通用户使用的命令 /sbin:存放管理员可以执行的命令 /home:存放普通的家目录 如张三家目录为/home/zhangsan /root:管理员的家目录 /etc ...
- java入门---基础语法&基础常识&编码规范&命名规范
一个Java程序可以认为是一系列对象的集合,而这些对象通过调用彼此的方法来协同工作.下面简要介绍下类.对象.方法和实例变量的概念. 对象:对象是类的一个实例,有状态和行为.例如,一条狗是一个对 ...
- gp的纯属意外的意外
一不小心,把方法都传过去了,一脸蒙蔽说的就是我,啊哈哈哈啊哈
- express操作数据库
Express 首页 入门 使用指南 API 中文手册 进阶话题 有用的资源 集成数据库 为 Express 应用添加连接数据库的能力,只需要加载相应数据库的 Node.js 驱动即可.这里将会简要介 ...
- 环境变量 - JDK
Linux 1. 备份并编辑配置文件 # cp /etc/profile /etc/profile.bak # vi /etc/profile 2. 设置JDK环境变量 export JAVA_HOM ...
- Spark搭档Elasticsearch
Spark与elasticsearch结合使用是一种常用的场景,小编在这里整理了一些Spark与ES结合使用的方法.一. write data to elasticsearch利用elasticsea ...
- HDU 4436 str2int(后缀自动机)(2012 Asia Tianjin Regional Contest)
Problem Description In this problem, you are given several strings that contain only digits from '0' ...