1.Spark Streaming功能介绍
1)定义
Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams

2.NC服务安装并运行Spark Streaming
1)在线安装nc命令
yum install -y nc
2)运行Spark Streaming 的WordCount
bin/run-example streaming.NetworkWordCount localhost 9999
3)把文件通过管道作为nc的输入,然后观察spark Streaming计算结果
cat test.txt | nc -lk 9999
文件具体内容
hadoop storm spark
hbase spark flume
spark dajiangtai spark
hdfs mapreduce spark
hive hdfs solr
spark flink storm
hbase storm es
3.Spark Streaming工作原理
1)Spark Streaming数据流处理

2)接收器工作原理

3)综合工作原理

4.Spark Streaming编程模型
1)StreamingContext初始化的两种方式
#第一种
val ssc = new StreamingContext(sc, Seconds(5))
#第二种
val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
2)Spark Streaming socket代码
object NetworkWordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount ")
System.exit(1)
}

//创建StreamingContext,每秒钟计算一次
val sparkConf = new SparkConf().setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(1))

//监听网络端口,参数一:hostname 参数二:port 参数三:存储级别,创建了lines流
val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)
//flatMap运算
val words = lines.flatMap(_.split(" "))
//map reduce 计算
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
5.Spark Streaming读取Socket流数据
1)spark-shell运行Streaming程序,要么线程数大于1,要么基于集群。
bin/spark-shell --master local[2]
bin/spark-shell --master spark://bigdata-pro01.kfk.com:7077
2)spark 运行模式

3)Spark Streaming读取Socket流数据
a)编写测试代码,并本地运行
object TestStreaming {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount ")
System.exit(1)
}

val spark=SparkSession.builder().master("local[2]").setAppName("streaming").getOrCreate()
val sc = spark.SparkContext

val ssc = new StreamingContext(sc, Seconds(5))

//监听网络端口,参数一:hostname 参数二:port 参数三:存储级别,创建了lines流
val lines = ssc.socketTextStream("igdata-pro02.kfk.com", 9999, StorageLevel.MEMORY_AND_DISK_SER)
//flatMap运算
val words = lines.flatMap(_.split(" "))
//map reduce 计算
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
b)启动nc服务发送数据
nc -lk 9999
6.Spark Streaming保存数据到外部系统
1)保存到mysql数据库

2)保存到hdfs

7.Spark Streaming与Kafka集成
1)Maven引入相关依赖:spark-streaming-kafka
2)编写测试代码并启动运行
object StreamingKafka8 {

def main(args: Array[String]): Unit = {

val spark = SparkSession.builder()
.master("local[2]")
.appName("streaming").getOrCreate()

val sc =spark.sparkContext;
val ssc = new StreamingContext(sc, Seconds(5))

// Create direct kafka stream with brokers and topics
val topicsSet =Set("weblogs")
val kafkaParams = Map[String, String]("metadata.broker.list" -> "bigdata-pro01.kfk.com:9092")
val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicsSet)

val lines = kafkaStream.map(x => x._2)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.print()

ssc.start()
ssc.awaitTermination()
}
}
3)启动Kafka服务并测试生成数据
bin/kafka-server-start.sh config/server.properties
bin/kafka-console-producer.sh --broker-list bigdata-pro01.kfk.com --topic weblogs

新闻实时分析系统 Spark Streaming实时数据分析的更多相关文章

  1. 新闻网大数据实时分析可视化系统项目——19、Spark Streaming实时数据分析

    1.Spark Streaming功能介绍 1)定义 Spark Streaming is an extension of the core Spark API that enables scalab ...

  2. Spark Streaming实时数据分析

    [kfk@bigdata-pro01 softwares]$ sudo rpm -ivh nc-.el6.x86_64.rpm Preparing... ####################### ...

  3. 新闻实时分析系统 SQL快速离线数据分析

    1.Spark SQL概述1)Spark SQL是Spark核心功能的一部分,是在2014年4月份Spark1.0版本时发布的. 2)Spark SQL可以直接运行SQL或者HiveQL语句 3)BI ...

  4. 【转】Spark Streaming 实时计算在甜橙金融监控系统中的应用及优化

    系统架构介绍 整个实时监控系统的架构是先由 Flume 收集服务器产生的日志 Log 和前端埋点数据, 然后实时把这些信息发送到 Kafka 分布式发布订阅消息系统,接着由 Spark Streami ...

  5. Spark Streaming实时计算框架介绍

    随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在 ...

  6. 【Streaming】30分钟概览Spark Streaming 实时计算

    本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...

  7. Spark练习之通过Spark Streaming实时计算wordcount程序

    Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...

  8. 用户点击行为实时分析系统spark

    系统设计技术有:Hadoop2.xZookeeperFlumeHiveHbaseKafkaSpark2.xSpark StreamingStructured StreamingMySQLHueJava ...

  9. 大数据Spark+Kafka实时数据分析案例

    本案例利用Spark+Kafka实时分析男女生每秒购物人数,利用Spark Streaming实时处理用户购物日志,然后利用websocket将数据实时推送给浏览器,最后浏览器将接收到的数据实时展现, ...

随机推荐

  1. 第3次作业-MOOC学习笔记:Python网络爬虫与信息提取

    1.注册中国大学MOOC 2.选择北京理工大学嵩天老师的<Python网络爬虫与信息提取>MOOC课程 3.学习完成第0周至第4周的课程内容,并完成各周作业 4.提供图片或网站显示的学习进 ...

  2. OptimalSolution(2)--二叉树问题(1)遍历与查找问题

    一.二叉树的按层打印与ZigZag打印 1.按层打印: 1 Level 1 : 1 / \ 2 3 Level 2 : 2 3 / / \ 4 5 6 Level 3 : 4 5 6 / \ 7 8 ...

  3. Leetcode Tags(13)Bit Manipulation

    一.477.汉明距离总和 输入: , , 输出: 解释: 在二进制表示中,4表示为0100,14表示为1110,2表示为0010.(这样表示是为了体现后四位之间关系) HammingDistance( ...

  4. unity基础命令

    获取所挂脚本元素的组件: rd = GetComponent<Rigidbody>(); 获取其他元素的组件: rd = GameObject.Find("Player" ...

  5. vue-cli3安装jQuery

    注:vue-cli3.0 没有了 webpack.config.js 配置文件,取而代之的是集合在 vue.config.js文件 内进行配置 默认已经安装好vue-cli3.0项目 step1:命令 ...

  6. 解决axios发送post请求,后端接收不到数据

    https://segmentfault.com/a/1190000012635783

  7. jupyter notebook启动需要输入密码的问题

    问题描述: 安装完jupyter notebook之后,启动时需要输入密码,如下图所示: 解决方法: 1.启动jupyter notebook 2.在另一个的终端中输入 jupyter noteboo ...

  8. const var let 三者的区别

    1.const定义的变量不可以修改,而且必须初始化. ;//正确 const b;//错误,必须初始化 console.log('函数外const定义b:' + b);//有输出值 b = ; con ...

  9. 在VMware下的Linux中的RAID5校验位算法下的磁盘管理

    前景:1988年由加利福尼亚大学伯克利分校发表的文章首次提到并定义了RAID,当今CPU性能每年可提升30%-50%但硬盘仅提升7%,渐渐的已经成为计算机整体性能的瓶颈,并且为了避免硬盘的突然损坏导致 ...

  10. [考试反思]0819NOIP模拟测试26:荒芜

    这么正式的考试,明天应该就是最后一次了吧 然而..今天,我仍然没能抓住机会 RNBrank1:.skyh还是稳.外校gmk拿走第三. 四五六名都是63-64.第七50.第八39.我和三个并列的是第九. ...