http://acm.hdu.edu.cn/showproblem.php?pid=4059

题意:给出一个n,求1~n里面与n互质的数的四次方的和是多少。

思路;不知道1~n的每个数的四次方的求和公式。看的是这篇:http://blog.csdn.net/acm_cxlove/article/details/7434864

求和公式:(1^4+2^4+……+n^4)=(n*(n+1)*(2n+1)*(3*n*n+3*n-1))/30;

然后先求出1~n的每个数的四次方的求和,然后再减去n的因子的四次方的求和。

把n的因子的质因子找出来,然后使用容斥原理去做。

容斥原理里面有一个点:例如要求所有2的倍数的因子,n是8的话,就有因子2,4,6,8,求这些的四次方的和就可以转化为2 ^ 4 * (1 ^ 4 + 2 ^ 4 + 3 ^ 4 + 4 ^ 4)。就是f_pow(prime[i], 4) * calsum(n / prime[i])。

除以30就是乘以30的逆元,就是f_pow(30, MOD-2);

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9 + ;
const int N = 1e5 + ;
// (1^4+2^4+……+n^4)=(n*(n+1)*(2n+1)*(3*n*n+3*n-1))/30;
LL inver, n;
int prime[N], not_prime[N], cnt;
vector<LL> fac; void Biao() {
cnt = ;
for(int i = ; i <= N; i++) {
if(not_prime[i]) continue;
prime[cnt++] = i;
for(int j = * i; j <= N; j += i) not_prime[j] = ;
}
} LL f_pow(LL a, LL b) {
LL ans = ;
a %= MOD, b %= MOD;
while(b) {
if(b & ) ans = ans * a % MOD;
a = a * a % MOD;
b >>= ;
}
return ans % MOD;
} LL calsum(LL n) {
LL ans = n;
ans = ans * ((n + ) % MOD) % MOD;
ans = ans * (( * n + ) % MOD) % MOD;
ans = ans * ((( * n * n % MOD) + ( * n % MOD) - + MOD) % MOD) % MOD;
ans = ans * inver % MOD;
return ans;
} void solve() {
fac.clear();
LL tmp = n;
for(int i = ; i < cnt; i++) {
if(tmp % prime[i] == ) {
fac.push_back(prime[i]);
while(tmp % prime[i] == ) tmp /= prime[i];
}
}
if(tmp > ) fac.push_back(tmp);
LL ans = calsum(n);
int sz = fac.size();
for(int st = ; st < ( << sz); st++) {
int num = , bit = ; LL now = ;
while(( << bit) <= st) {
if(st & ( << bit)) num++, now *= fac[bit];
bit++;
}
LL res = f_pow(now, 4LL) * (calsum(n / now) % MOD) % MOD;
if(num % ) ans = (ans - res + MOD) % MOD;
else ans = (ans + res + MOD) % MOD;
}
printf("%lld\n", ans);
} int main() {
inver = f_pow(30LL, MOD - );
// printf("%lld\n", inver);
Biao();
int t; scanf("%d", &t);
while(t--) {
scanf("%lld", &n);
solve();
}
return ;
}

HDU 4059:The Boss on Mars(数学公式+容斥原理)的更多相关文章

  1. HDU 4059 The Boss on Mars(容斥原理)

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4059 The Boss on Mars 容斥原理

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 4059 The Boss on Mars(容斥原理 + 四次方求和)

    传送门 The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. hdu 4059 The Boss on Mars

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 数论 + 容斥 - HDU 4059 The Boss on Mars

    The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...

  6. hdu 4059 The Boss on Mars(纳入和排除)

    http://acm.hdu.edu.cn/showproblem.php?pid=4059 定义S = 1^4 + 2^4 + 3^4+.....+n^4.如今减去与n互质的数的4次方.问共降低了多 ...

  7. hdu 4059 The Boss on Mars 容斥

    题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我 ...

  8. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  9. HDU 4059 容斥原理+快速幂+逆元

    E - The Boss on Mars Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  10. The Boss on Mars

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. 【代码备忘录】VC设置您的计算机环境变量、注册表操作

    欢迎增加C/C++ QQ组,无论你的工作.学生,只有具备c / vc / c++ 编程经验.就来吧!158427611 [设置电脑环境变量] 设置电脑环境变量非常easy,由于window而言.环境变 ...

  2. ajax默认form表单提交,导致实体不识别

    出现位置:实体比较复杂,包含List之类的时候 public class AdvertisementType { /// <summary> /// 广告位名称 /// </summ ...

  3. css3如何让div一直循环自转圈,附带:网络请求通知图片一直在转圈实例

    css3如何让div一直循环自转圈 代码如下: div{ -webkit-transition-property: -webkit-transform; -webkit-transition-dura ...

  4. 如何在XAML中转义大括号

    原文:如何在XAML中转义大括号 如何在XAML中转义大括号                                       周银辉 我们知道大括号"{}"在XAML中 ...

  5. Win8 Metro(C#)数字图像处理--2.74图像凸包计算

    原文:Win8 Metro(C#)数字图像处理--2.74图像凸包计算 /// <summary> /// Convex Hull compute. /// </summary> ...

  6. Win8Metro(C#)数字图像处理--2.8图像线性变换

    原文:Win8Metro(C#)数字图像处理--2.8图像线性变换  2.8图像线性变换 [函数名称] 图像线性变换函数LinearTransformProcess(WriteableBitmap ...

  7. GIS基础软件及操作(三)

    原文 GIS基础软件及操作(三) 练习三.地图配准操作 1.对无坐标信息的地形图(图片格式)进行地图配准操作2.编辑器的使用(点要素.线要素.多边形要素的数字化) 本例主要介绍如何给无坐标信息的地形图 ...

  8. WP 8.1 中挂起时页面数据保存方式(1)

    1.保存到Applicaion Data配置信息中: 保存: privatevoid testTB_TextChanged(object sender, TextChangedEventArgs e) ...

  9. 【Python】:用python做下百度2014笔试题

    国庆节最后一天,明天就要上班了,闲来无事做做百度2014笔试题,好久没用过C++了,索性就用python简单的写一下,体验下题目难度.题目是从[大卫David]那里copy过来的. 1.给定任意一个正 ...

  10. 在Delphi中编辑res文件

    先用记事本编写一个rc的文件.如内容为:_Comms RCData Comms.jpg Comms.jpg为图片名称,然后在这个rc文件和图片拷贝到delphi安装路径的bin文件夹里面,选中这两个文 ...