BZOJ3110[Zjoi2013]K大数查询(树状数组+整体二分)
3110 [Zjoi2013]K大数查询
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1
的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是
1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3
大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
题解:
题意概括
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c。如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
题解
让我们来考虑神奇的分治算法。
整体二分!!(当你会了)
首先当你已经掌握了树状数组的区间加和区间询问(如果不会->点这里)
我们考虑二分答案。
注意进行以下操作要严格按照输入时间先后顺序来。
首先对于加进去的数字c,我们把他变成n-c+1,这样就把询问前k大变成了前k小。
如果是修改操作,如果修改的值比当前的mid值小,就修改,并扔到左区间里面。否则扔到右边。
如果是询问操作,如果在当前的状态下,该询问的区间内查询到的数的个数res比当前询问的c要大(或者相等),那么显然答案在左区间,把他扔到左边,否则把他的c减掉res再扔到右边去。
然后递归分治两个区间就可以了。
(本质是个二分答案的升级版)
参考代码:
/**************************************************************
Problem: 3110
User: SongHL
Language: C++
Result: Accepted
Time:1880 ms
Memory:3640 kb
****************************************************************/ #include<bits/stdc++.h>
using namespace std;
#define lowbit(x) x&-x
#define clr(a,b) memset(a,b,sizeof a)
typedef long long ll;
const int maxn=;
int n,m,id[maxn],templ[maxn],tempr[maxn];
ll tree[][maxn];
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void add(int t,int x,int y)//单点加
{
while(x<=n+)
{
tree[t][x]+=y;
x+=lowbit(x);
}
}
inline void update(int l,int r,int val)//区间加
{
add(,l,val);add(,l,l*val);
add(,r+,-val);add(,r+,-val*(r+));
}
inline ll Sum(int t,int x)//前缀和
{
ll ans=;
while(x>)
{
ans+=tree[t][x];
x-=lowbit(x);
}
return ans;
}
inline ll query(int l,int r)//区间求和
{
return Sum(,r)*(r+)-Sum(,l)*l-Sum(,r)+Sum(,l);
}
struct Node{
int type,l,r,x,ans;
void Get()
{
type=read();l=read();r=read();x=read();
if(type==) x=n-x+;
}
} a[maxn]; inline void Solve(int lx,int rx,int l,int r)
{
if(l>r) return ;
if(lx==rx)
{
for(int i=l;i<=r;++i) a[id[i]].ans=lx;
return ;
}
int midx=lx+rx>>;
int L=,R=;
for(int i=l;i<=r;++i)
{
if(a[id[i]].type==)
{
if(a[id[i]].x<=midx) templ[++L]=id[i],update(a[id[i]].l,a[id[i]].r,);
else tempr[++R]=id[i];
}
else
{
ll res=query(a[id[i]].l,a[id[i]].r);
if(res>=a[id[i]].x) templ[++L]=id[i];
else tempr[++R]=id[i],a[id[i]].x-=res;
}
}
for(int i=;i<=L;++i)
{
if(a[templ[i]].type==)
update(a[templ[i]].l,a[templ[i]].r,-);
} for(int i=l;i<=l+L-;++i) id[i]=templ[i-(l-)];
for(int i=r-R+;i<=r;++i) id[i]=tempr[i-(r-R)]; Solve(lx,midx,l,l+L-);
Solve(midx+,rx,r-R+,r);
} int main()
{
n=read();m=read();
for(int i=;i<=m;++i) a[i].Get(),id[i]=i;
clr(tree,);
Solve(,*n+,,m);
for(int i=;i<=m;++i)
if(a[i].type==) printf("%d\n",n-a[i].ans+);
return ;
}
BZOJ3110[Zjoi2013]K大数查询(树状数组+整体二分)的更多相关文章
- bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1384 Solved: 629[Submit][Stat ...
- BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )
BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...
- BZOJ3110 [Zjoi2013]K大数查询 树套树 线段树 整体二分 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3110 题意概括 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位 ...
- [BZOJ3110] [Zjoi2013] K大数查询 (树套树)
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置 ...
- Cogs 1345. [ZJOI2013] K大数查询(树套树)
[ZJOI2013] K大数查询 /* 树套树写法. bzoj过不了. 可能有负数要离散吧. 线段树套线段树. 外层权值线段树,内层区间线段树维护标记. 对权值建一棵权值线段树. 某个点表示权值在某个 ...
- 【BZOJ3110】[Zjoi2013]K大数查询 树套树
[BZOJ3110][Zjoi2013]K大数查询 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c,如果 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- BZOJ3110: [Zjoi2013]K大数查询
喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...
- [BZOJ3110][ZJOI2013]K大数查询(整体二分)
BZOJ Luogu sol 整体二分,其实很简单的啦. 对所有询问二分一个答案mid,把所有修改操作中数字大于mid的做一个区间覆盖(区间加1) 查询就是区间查询 然后左右分一分即可 注意是第k大 ...
随机推荐
- .NET Core 对龙芯的支持情况和对 .NET Core 开发嵌入式的思考
目录 .NET Core 对龙芯的支持情况和对 .NET Core 开发嵌入式的思考 一,遗憾的尝试 二,.NET Core在嵌入式下的几点不足 三,.NET Core 龙芯移植的进展和资料 .NET ...
- HTTP的请求方式
GET 请求获取 Request-URI 所标识的资源POST 在 Request-URI 所标识的资源后附加新的数据HEAD 请求获取由 Request-URI 所标识的资源的响应消息报头PUT ...
- [java] 笔记 from黑马
1. 关于String的创建. PS:String的底层是用字节数组来实现的. 2.字符串常量池的笔记 具体指向是如下图的, 注意看0x666和0x999这两个地址. 3.原因如下: 4. 5. ...
- 05-商品类别数据和VUE展示
一.商品类别数据和VUE展示 1.商品类别数据接口 将商品类别数据展示出来,视图(views.py)代码如下: class CategoryViewset(mixins.ListModelMixin, ...
- (线段树)A Corrupt Mayor's Performance Art
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 题意: 区间更新, 区间询问: 题解: 区间更新, 区间询问, 一共30种颜色, 可用int 来 ...
- 快速搭建 SpringCloud 微服务开发环境的脚手架
本文适合有 SpringBoot 和 SpringCloud 基础知识的人群,跟着本文可使用和快速搭建 SpringCloud 项目. 本文作者:HelloGitHub-秦人 HelloGitHub ...
- Solr搜索引擎【索引提交、事务日志、原子更新】
一.索引提交 当一个文档被添加到Solr中,但没有提交给索引之前,这个文档是无法被搜索的.换句话说,从查询的角度看,文档直到提交之后才是可见的.Solr有两种类型的提交:软提交和正常提交[也称硬提交] ...
- 利用Spring AOP的通知类型以及创建通知
写在最前端 1.SpringAOP中共有六种通知类型,只要我们自定义一个类实现对应的接口,它们全都是org.springframework.aop包中的. 2.AOP的连接点可以是方法调用.方法调用本 ...
- Spring Cloud Alibaba(五)RocketMQ 异步通信实现
本文探讨如何使用 RocketMQ Binder 完成 Spring Cloud 应用消息的订阅和发布. 介绍 RocketMQ 是一款开源的分布式消息系统,基于高可用分布式集群技术,提供低延时的.高 ...
- 【10分钟学Spring】:(一)初识Spring框架
简介 Spring是一个轻量级的企业级的Java开发框架.主要是用来替代原来更加重量级的企业级Java技术,比如EJB(Enterprise JavaBean).Java数据对象(Java Data ...