NLP(十八) 一维卷积网络IMDB情感分析
原文链接:http://www.one2know.cn/nlp18/
- 准备
Keras的IMDB数据集,包含一个词集和对应的情感标签
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation
from keras.layers import Embedding
from keras.layers import Conv1D,GlobalAveragePooling1D
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report
# 参数 最大特征数6000 单个句子最大长度400
max_features = 6000
max_length = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
print(len(x_train),'train observations')
print(len(x_test),'test observations')
wind = imdb.get_word_index() # 给单词编号,用数字代替单词
revind = dict((k,v) for k,v in enumerate(wind))
# 单词编号:情感词性编号 字典 => 情感词性编号:一堆该词性的单词编号列表
print(x_train[0])
print(y_train[0])
def decode(sent_list): # 逆映射字典解码 数字=>单词
new_words = []
for i in sent_list:
new_words.append(revind[i])
comb_words = " ".join(new_words)
return comb_words
print(decode(x_train[0]))
输出:
25000 train observations
25000 test observations
[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 。。。]
1
tsukino 'royale rumbustious canet thrace bellow headbanger 。。。
- 如何实现
1.预处理,数据整合到一个固定的维度
2.一维CNN模型的构建和验证
3.模型评估 - 代码
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation
from keras.layers import Embedding
from keras.layers import Conv1D,GlobalAveragePooling1D
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report
# 参数 最大特征数6000 单个句子最大长度400
max_features = 6000
max_length = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
# print(x_train) # 一堆句子,每个句子有有一堆单词编码
# print(y_train) # 一堆0或1
# print(len(x_train),'train observations')
# print(len(x_test),'test observations')
wind = imdb.get_word_index() # 给单词编号,用数字代替单词
revind = dict((k, v) for k, v in enumerate(wind))
# 单词编号:情感词性编号 字典 => 情感词性编号:一堆该词性的单词编号列表
# print(x_train[0])
# print(y_train[0])
def decode(sent_list): # 逆映射字典解码 数字=>单词
new_words = []
for i in sent_list:
new_words.append(revind[i])
comb_words = " ".join(new_words)
return comb_words
# print(decode(x_train[0]))
# 将句子填充到最大长度400 使数据长度保持一致
x_train = sequence.pad_sequences(x_train,maxlen=max_length)
x_test = sequence.pad_sequences(x_test,maxlen=max_length)
print('x_train.shape:',x_train.shape)
print('x_test.shape:',x_test.shape)
## Keras框架 深度学习 一维CNN模型
# 参数
batch_size = 32
embedding_dims = 60
num_kernels = 260
kernel_size = 3
hidden_dims = 300
epochs = 3
# 建立模型
model = Sequential()
model.add(Embedding(max_features,embedding_dims,input_length=max_length))
model.add(Dropout(0.2))
model.add(Conv1D(num_kernels,kernel_size,padding='valid',activation='relu',strides=1))
model.add(GlobalAveragePooling1D())
model.add(Dense(hidden_dims))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
print(model.summary())
model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,validation_split=0.2)
# 模型预测
y_train_predclass = model.predict_classes(x_train,batch_size=batch_size)
y_test_preclass = model.predict_classes(x_test,batch_size=batch_size)
y_train_predclass.shape = y_train.shape
y_test_preclass.shape = y_test.shape
print('\n\nCNN 1D - Train accuracy:',round(accuracy_score(y_train,y_train_predclass),3))
print('\nCNN 1D of Training data\n',classification_report(y_train,y_train_predclass))
print('\nCNN 1D - Train Confusion Matrix\n\n',pd.crosstab(y_train,y_train_predclass,
rownames=['Actuall'],colnames=['Predicted']))
print('\nCNN 1D - Test accuracy:',round(accuracy_score(y_test,y_test_preclass),3))
print('\nCNN 1D of Test data\n',classification_report(y_test,y_test_preclass))
print('\nCNN 1D - Test Confusion Matrix\n\n',pd.crosstab(y_test,y_test_preclass,
rownames=['Actuall'],colnames=['Predicted']))
输出:
Using TensorFlow backend.
x_train.shape: (25000, 400)
x_test.shape: (25000, 400)
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\framework\op_def_library.py:263:
colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a
future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From
D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout
(from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a
future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 400, 60) 360000
_________________________________________________________________
dropout_1 (Dropout) (None, 400, 60) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 398, 260) 47060
_________________________________________________________________
global_average_pooling1d_1 ( (None, 260) 0
_________________________________________________________________
dense_1 (Dense) (None, 300) 78300
_________________________________________________________________
dropout_2 (Dropout) (None, 300) 0
_________________________________________________________________
activation_1 (Activation) (None, 300) 0
_________________________________________________________________
dense_2 (Dense) (None, 1) 301
_________________________________________________________________
activation_2 (Activation) (None, 1) 0
=================================================================
Total params: 485,661
Trainable params: 485,661
Non-trainable params: 0
_________________________________________________________________
None
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from
tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 20000 samples, validate on 5000 samples
Epoch 1/3
2019-07-07 15:27:37.848057: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU
supports instructions that this TensorFlow binary was not compiled to use: AVX2
32/20000 [..............................] - ETA: 7:03 - loss: 0.6929 - acc: 0.5000
64/20000 [..............................] - ETA: 4:13 - loss: 0.6927 - acc: 0.5156
96/20000 [..............................] - ETA: 3:19 - loss: 0.6933 - acc: 0.5000
128/20000 [..............................] - ETA: 2:50 - loss: 0.6935 - acc: 0.4844
160/20000 [..............................] - ETA: 2:32 - loss: 0.6931 - acc: 0.4813
此处省略一堆epoch的一堆操作
CNN 1D - Train accuracy: 0.949
CNN 1D of Training data
precision recall f1-score support
0 0.94 0.96 0.95 12500
1 0.95 0.94 0.95 12500
accuracy 0.95 25000
macro avg 0.95 0.95 0.95 25000
weighted avg 0.95 0.95 0.95 25000
CNN 1D - Train Confusion Matrix
Predicted 0 1
Actuall
0 11938 562
1 715 11785
CNN 1D - Test accuracy: 0.876
CNN 1D of Test data
precision recall f1-score support
0 0.86 0.89 0.88 12500
1 0.89 0.86 0.87 12500
accuracy 0.88 25000
macro avg 0.88 0.88 0.88 25000
weighted avg 0.88 0.88 0.88 25000
CNN 1D - Test Confusion Matrix
Predicted 0 1
Actuall
0 11144 1356
1 1744 10756
NLP(十八) 一维卷积网络IMDB情感分析的更多相关文章
- NLP入门(十)使用LSTM进行文本情感分析
情感分析简介 文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性 ...
- 十八、centos7网络属性配置
一.为什么需要这个 服务器通常有多块网卡,有板载集成的,同时也有插在PCIe插槽的.Linux系统的命名原来是eth0,eth1这样的形式,但是这个编号往往不一定准确对应网卡接口的物理顺序.为解决这类 ...
- keras—多层感知器MLP—IMDb情感分析
import urllib.request import os import tarfile from keras.datasets import imdb from keras.preprocess ...
- 最全面的图卷积网络GCN的理解和详细推导,都在这里了!
目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral doma ...
- 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作
目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注N ...
- TensorFlow实现文本情感分析详解
http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...
- TensorFlow文本情感分析实现
TensorFlow文本情感分析实现 前面介绍了如何将卷积网络应用于图像.本文将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句子或文档表示为矩阵,则该矩阵与其中每个单元 ...
- 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...
- NLP十大里程碑
NLP十大里程碑 2.1 里程碑一:1985复杂特征集 复杂特征集(complex feature set)又叫做多重属性(multiple features)描写.语言学里,这种描写方法最早出现在语 ...
随机推荐
- web设计_8_数据表格内容样式分离
1.页面需要用到table的时候,样式重置CSS要设置: table{ border-collapse: collapse; border-spacing:; } 2. HTML结构 <tabl ...
- django中通过文件和Ajax来上传文件
一.通过form表单来上传文件 1.在html模板中 <form action="/index/" method="post" enctype=" ...
- 【Android Studio】E/memtrack: Couldn't load memtrack module (No such file or directory)【待解决】
Android Studio 又遇到了问题--如下: 06-21 07:27:57.855 3232-3232/? E/memtrack: Couldn't load memtrack module ...
- 【Android Studio】Frameworks detected: Android framework is detected in the project Configure
刚开始在 Mac 上用 Android Studio, 打开第一个项目就遇到了问题,描述如下: 上午9:: Frameworks detected: Android framework is dete ...
- ArrayList 的使用方法【摘要】
ArrayList 的使用方法 1.什么是ArrayList ArrayList就是传说中的动态数组,用MSDN中的说法,就是Array的复杂版本,它提供了如下一些好处: (1)动态的增加和减少元素 ...
- java支付宝app支付-代码实现
1.我们需要在支付宝商户平台配置好,取到四个参数如下(这是支付宝官方配置地址):https://www.cnblogs.com/fuzongle/p/10217144.html 合作身份者ID:123 ...
- JAVA基础知识(三):input.nextLine() 和input.next()
next()方法在读取内容时,会过滤掉有效字符前面的无效字符,对输入有效字符之前遇到的空格键.Tab键或Enter键等结束符,next()方法会自动将其过滤掉:只有在读取到有效字符之后,next()方 ...
- CSS:抗锯齿 font-smoothing
本文引自:http://www.cnblogs.com/sunshq/p/4595673.html -webkit-font-smoothing 这个属性可以使页面上的字体抗锯齿,使用后字体看起来会更 ...
- Draw.io
如何给类图增加一个字段? 选中一个字段,然后按 Ctrl +Enter 即可. 参考:Add row to class diagram - stackoverflow
- 什么是HTML,HTML的简介,HTML结构
html:超文本标记语言(Hyper Text Markup Language) ==============基本结构================= <html><!--最外层为 ...