原文链接:http://www.one2know.cn/nlp18/

  • 准备

    Keras的IMDB数据集,包含一个词集和对应的情感标签
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation
from keras.layers import Embedding
from keras.layers import Conv1D,GlobalAveragePooling1D
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report # 参数 最大特征数6000 单个句子最大长度400
max_features = 6000
max_length = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
print(len(x_train),'train observations')
print(len(x_test),'test observations') wind = imdb.get_word_index() # 给单词编号,用数字代替单词
revind = dict((k,v) for k,v in enumerate(wind))
# 单词编号:情感词性编号 字典 => 情感词性编号:一堆该词性的单词编号列表
print(x_train[0])
print(y_train[0]) def decode(sent_list): # 逆映射字典解码 数字=>单词
new_words = []
for i in sent_list:
new_words.append(revind[i])
comb_words = " ".join(new_words)
return comb_words
print(decode(x_train[0]))

输出:

25000 train observations
25000 test observations
[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 。。。]
1
tsukino 'royale rumbustious canet thrace bellow headbanger 。。。
  • 如何实现

    1.预处理,数据整合到一个固定的维度

    2.一维CNN模型的构建和验证

    3.模型评估
  • 代码
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation
from keras.layers import Embedding
from keras.layers import Conv1D,GlobalAveragePooling1D
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report # 参数 最大特征数6000 单个句子最大长度400
max_features = 6000
max_length = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
# print(x_train) # 一堆句子,每个句子有有一堆单词编码
# print(y_train) # 一堆0或1
# print(len(x_train),'train observations')
# print(len(x_test),'test observations') wind = imdb.get_word_index() # 给单词编号,用数字代替单词
revind = dict((k, v) for k, v in enumerate(wind))
# 单词编号:情感词性编号 字典 => 情感词性编号:一堆该词性的单词编号列表
# print(x_train[0])
# print(y_train[0]) def decode(sent_list): # 逆映射字典解码 数字=>单词
new_words = []
for i in sent_list:
new_words.append(revind[i])
comb_words = " ".join(new_words)
return comb_words
# print(decode(x_train[0])) # 将句子填充到最大长度400 使数据长度保持一致
x_train = sequence.pad_sequences(x_train,maxlen=max_length)
x_test = sequence.pad_sequences(x_test,maxlen=max_length)
print('x_train.shape:',x_train.shape)
print('x_test.shape:',x_test.shape) ## Keras框架 深度学习 一维CNN模型
# 参数
batch_size = 32
embedding_dims = 60
num_kernels = 260
kernel_size = 3
hidden_dims = 300
epochs = 3
# 建立模型
model = Sequential()
model.add(Embedding(max_features,embedding_dims,input_length=max_length))
model.add(Dropout(0.2))
model.add(Conv1D(num_kernels,kernel_size,padding='valid',activation='relu',strides=1))
model.add(GlobalAveragePooling1D())
model.add(Dense(hidden_dims))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
print(model.summary()) model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,validation_split=0.2) # 模型预测
y_train_predclass = model.predict_classes(x_train,batch_size=batch_size)
y_test_preclass = model.predict_classes(x_test,batch_size=batch_size)
y_train_predclass.shape = y_train.shape
y_test_preclass.shape = y_test.shape print('\n\nCNN 1D - Train accuracy:',round(accuracy_score(y_train,y_train_predclass),3))
print('\nCNN 1D of Training data\n',classification_report(y_train,y_train_predclass))
print('\nCNN 1D - Train Confusion Matrix\n\n',pd.crosstab(y_train,y_train_predclass,
rownames=['Actuall'],colnames=['Predicted']))
print('\nCNN 1D - Test accuracy:',round(accuracy_score(y_test,y_test_preclass),3))
print('\nCNN 1D of Test data\n',classification_report(y_test,y_test_preclass))
print('\nCNN 1D - Test Confusion Matrix\n\n',pd.crosstab(y_test,y_test_preclass,
rownames=['Actuall'],colnames=['Predicted']))

输出:

Using TensorFlow backend.
x_train.shape: (25000, 400)
x_test.shape: (25000, 400)
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\framework\op_def_library.py:263:
colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a
future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From
D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout
(from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a
future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
_________________________________________________________________
Layer (type)                 Output Shape              Param #   =================================================================
embedding_1 (Embedding)      (None, 400, 60)           360000   
_________________________________________________________________
dropout_1 (Dropout)          (None, 400, 60)           0        
_________________________________________________________________
conv1d_1 (Conv1D)            (None, 398, 260)          47060    
_________________________________________________________________
global_average_pooling1d_1 ( (None, 260)               0        
_________________________________________________________________
dense_1 (Dense)              (None, 300)               78300    
_________________________________________________________________
dropout_2 (Dropout)          (None, 300)               0        
_________________________________________________________________
activation_1 (Activation)    (None, 300)               0        
_________________________________________________________________
dense_2 (Dense)              (None, 1)                 301      
_________________________________________________________________
activation_2 (Activation)    (None, 1)                 0         =================================================================
Total params: 485,661
Trainable params: 485,661
Non-trainable params: 0
_________________________________________________________________
None
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from
tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 20000 samples, validate on 5000 samples
Epoch 1/3
2019-07-07 15:27:37.848057: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU
supports instructions that this TensorFlow binary was not compiled to use: AVX2    32/20000 [..............................] - ETA: 7:03 - loss: 0.6929 - acc: 0.5000
   64/20000 [..............................] - ETA: 4:13 - loss: 0.6927 - acc: 0.5156
   96/20000 [..............................] - ETA: 3:19 - loss: 0.6933 - acc: 0.5000
  128/20000 [..............................] - ETA: 2:50 - loss: 0.6935 - acc: 0.4844
  160/20000 [..............................] - ETA: 2:32 - loss: 0.6931 - acc: 0.4813
此处省略一堆epoch的一堆操作 CNN 1D - Train accuracy: 0.949 CNN 1D of Training data
               precision    recall  f1-score   support            0       0.94      0.96      0.95     12500
           1       0.95      0.94      0.95     12500     accuracy                           0.95     25000
   macro avg       0.95      0.95      0.95     25000
weighted avg       0.95      0.95      0.95     25000 CNN 1D - Train Confusion Matrix  Predicted      0      1
Actuall               
0          11938    562
1            715  11785 CNN 1D - Test accuracy: 0.876 CNN 1D of Test data
               precision    recall  f1-score   support            0       0.86      0.89      0.88     12500
           1       0.89      0.86      0.87     12500     accuracy                           0.88     25000
   macro avg       0.88      0.88      0.88     25000
weighted avg       0.88      0.88      0.88     25000 CNN 1D - Test Confusion Matrix  Predicted      0      1
Actuall               
0          11144   1356
1           1744  10756

NLP(十八) 一维卷积网络IMDB情感分析的更多相关文章

  1. NLP入门(十)使用LSTM进行文本情感分析

    情感分析简介   文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性 ...

  2. 十八、centos7网络属性配置

    一.为什么需要这个 服务器通常有多块网卡,有板载集成的,同时也有插在PCIe插槽的.Linux系统的命名原来是eth0,eth1这样的形式,但是这个编号往往不一定准确对应网卡接口的物理顺序.为解决这类 ...

  3. keras—多层感知器MLP—IMDb情感分析

    import urllib.request import os import tarfile from keras.datasets import imdb from keras.preprocess ...

  4. 最全面的图卷积网络GCN的理解和详细推导,都在这里了!

    目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral doma ...

  5. 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作

    目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注N ...

  6. TensorFlow实现文本情感分析详解

    http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...

  7. TensorFlow文本情感分析实现

    TensorFlow文本情感分析实现 前面介绍了如何将卷积网络应用于图像.本文将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句子或文档表示为矩阵,则该矩阵与其中每个单元 ...

  8. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  9. NLP十大里程碑

    NLP十大里程碑 2.1 里程碑一:1985复杂特征集 复杂特征集(complex feature set)又叫做多重属性(multiple features)描写.语言学里,这种描写方法最早出现在语 ...

随机推荐

  1. web设计_4_可扩展的行

    不要指定横向页面组件的高度,要让它们能够在纵向自由扩展. 常见的包含文章正文或大段文字的区域,应该适应任何篇幅和大小的文字. 但是例如文章标题.登陆信息栏等也要考虑文字内容数量及高度的变化. 例如:下 ...

  2. Python解释器安装教程和环境变量配置

    Python解释器安装教程和环境变量配置 Python解释器安装 登录Python的官方网站   https://www.python.org/  进行相应版本的下载. 第一步:根据电脑系统选择软件适 ...

  3. Linux学习笔记04

    文件查找命令find 文件查找命令: which locate find which:查找命令字所在的位置 locate:模糊匹配(只要包含关键字的文件都查找出来) 不是实时的,基于数据库查找, up ...

  4. web安全脑图

  5. 2019上半年总结——Github上那些Java面试、学习相关仓库

    分享一下最近逛Github看到了一些对于Java面试以及学习有帮助的仓库,这些仓库涉及Java核心知识点整理.Java常见面试题.算法.基础知识点比如网络和操作系统等等. 知识点相关 1.JavaGu ...

  6. spark shuffle写操作三部曲之BypassMergeSortShuffleWriter

    前言 再上一篇文章 spark shuffle的写操作之准备工作 中,主要介绍了 spark shuffle的准备工作,本篇文章主要介绍spark shuffle使用BypassMergeSortSh ...

  7. lvs模式及算法

    一.三种模式 (一).Virtual Servervia Network Address Translation(VS/NAT) 通过网路地址转换,调度器重写请求报文的目标地址,根据预设的调度算法,将 ...

  8. [nghttp2]压测工具,源码编译并进行deb打包过程

    编译环境:deepin 15.11桌面版 nghttp2下载地址:https://github.com/nghttp2/nghttp2 环境要求 emm只能在类Linux环境才能完整编译,想在Wind ...

  9. nginx基本运维及常用配置

    nginx基本运维及常用配置 ========================================================== 基本运维 nginx 的启动 nginx -c /p ...

  10. [TCP/IP]DNS解析

    DNS解析主机的IP地址 host -t A www.baidu.com