Weakened Common Divisor
time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand new concept of the weakened common divisor (WCD) of a list of pairs of integers.

For a given list of pairs of integers (a1,b1)(a1,b1), (a2,b2)(a2,b2), ..., (an,bn)(an,bn) their WCD is arbitrary integer greater than 11, such that it divides at least one element in each pair. WCD may not exist for some lists.

For example, if the list looks like [(12,15),(25,18),(10,24)][(12,15),(25,18),(10,24)], then their WCD can be equal to 22, 33, 55 or 66 (each of these numbers is strictly greater than 11 and divides at least one number in each pair).

You're currently pursuing your PhD degree under Ildar's mentorship, and that's why this problem was delegated to you. Your task is to calculate WCD efficiently.

Input

The first line contains a single integer nn (1≤n≤1500001≤n≤150000) — the number of pairs.

Each of the next nn lines contains two integer values aiai, bibi (2≤ai,bi≤2⋅1092≤ai,bi≤2⋅109).

Output

Print a single integer — the WCD of the set of pairs.

If there are multiple possible answers, output any; if there is no answer, print −1−1.

Examples
input

Copy
3
17 18
15 24
12 15
output

Copy
6
input

Copy
2
10 16
7 17
output

Copy
-1
input

Copy
5
90 108
45 105
75 40
165 175
33 30
output

Copy
5
Note

In the first example the answer is 66 since it divides 1818 from the first pair, 2424 from the second and 1212 from the third ones. Note that other valid answers will also be accepted.

In the second example there are no integers greater than 11 satisfying the conditions.

In the third example one of the possible answers is 55. Note that, for example, 1515 is also allowed, but it's not necessary to maximize the output.

题意:有n组数,每组数有两个数,求一个数是所有组数中的两个中一个的因子

分析:分解第一组数得到他们的质因子,如果这些数有解,则这些因子肯定有一个是其他所有组数中至少一个数的因子

  枚举剩下每组数

AC代码:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
const ll mod = 998244353;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll a[maxn], b[maxn];
int main() {
ios::sync_with_stdio(0);
ll n, x, y;
set<ll> s, t;
cin >> n;
for( ll i = 0; i < n; i ++ ) {
cin >> a[i] >> b[i];
}
x = a[0], y = b[0];
for( ll i = 2; i*i <= x; i ++ ) {
if( x%i == 0 ) {
s.insert(i);
while( x%i == 0 ) {
x /= i;
}
}
}
for( ll i = 2; i*i <= y; i ++ ) {
if( y%i == 0 ) {
s.insert(i);
while( y%i == 0 ) {
y /= i;
}
}
}
if( x > 1 ) {
s.insert(x);
}
if( y > 1 ) {
s.insert(y);
}
bool flg = false;
for( ll i : s ) {
bool flag = true;
for( ll j = 1; j < n; j ++ ) {
if( a[j]%i && b[j]%i ) {
flag = false;
break;
}
}
if(flag) {
cout << i << endl;
flg = true;
break;
}
}
if(!flg) {
cout << -1 << endl;
}
return 0;
}

  

CF1025B Weakened Common Divisor 数学的更多相关文章

  1. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  2. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

  3. CF1025B Weakened Common Divisor 题解

    Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...

  4. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  5. hdu 5207 Greatest Greatest Common Divisor 数学

    Greatest Greatest Common Divisor Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...

  6. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  7. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  8. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  9. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

随机推荐

  1. Spring源码解析——循环依赖的解决方案

    一.前言 承接<Spring源码解析--创建bean>.<Spring源码解析--创建bean的实例>,我们今天接着聊聊,循环依赖的解决方案,即创建bean的ObjectFac ...

  2. eclipse的下载安装配置

    1.在eclipse官网下载与你电脑版本相对应的安装包.链接:https://www.eclipse.org/downloads/eclipse-packages/ 2.下载与eclipse版本相对应 ...

  3. RocketMQ中Broker的消息存储源码分析

    Broker和前面分析过的NameServer类似,需要在Pipeline责任链上通过NettyServerHandler来处理消息 [RocketMQ中NameServer的启动源码分析] 实际上就 ...

  4. Android 9.0 关机流程分析

    极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...

  5. 【Java例题】3.5 级数之和

    5. 计算级数之和: y=3*1!/1-3^2*2!/2^2+3^3*3!/3^3-...+ (-1)^(n-1)*3^n*n!/n^n. 这里的"^"表示乘方,"!&q ...

  6. pythonday06数据类型(四)

    今日内容 1.集合 2内存相关 1.集合set 无序 无重复 v = {1,2,3,4,5,6,99,100} # 疑问:v = {} """ None int v1 = ...

  7. 浅谈IDEA搭建SSM框架的集成

    前言 学习完MyBatis,Spring,SpringMVC之后,我们需要做的就是将这三者联系起来,Spring实现业务对象管理,Spring MVC负责请求的转发和视图管理, MyBatis作为数据 ...

  8. 什么时候使用redis?什么时候使用memcache?

    要清楚为什么,redis具有高可用特性,并且可固化,但特性有时候不能成为选择他的理由,一些业务场景中并不需要这样的特性.   什么时候倾向于选择redis? 1.复杂数据结构 value是哈希,列表, ...

  9. 洛谷 P2157 [SDOI2009]学校食堂

    题意简述 每个人有一个口味,食堂每次只能为一个人做菜 做每道菜所需的时间是和前一道菜有关的,若前一道菜的对应的口味是a,这一道为b,则做这道菜所需的时间为a 异或 b 每个人都有一个容忍度,最多允许紧 ...

  10. php opcodes(vld)翻译教程

    一.php opcodes的由来(如果你只想知道如何解php opcodes就直接跳过这步) 1.PHP内核-Zend引擎的详解:https://www.php.cn/php-weizijiaoche ...