Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri. 

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

 
题意:给你一系列的区间有顺序的,按顺序将给定区间染上各不相同的颜色,最后问你一共能看到几种颜色。
 
我的想法是倒过来考虑,因为在最后涂的颜色不会被覆盖掉。染完色就讲这个区间全部赋值为1,到下个区间如果这个区间内所有值都为1,
那么这个颜色就看不到了,被覆盖掉了。实现这种方法可以借助线段树区间更新,接下来就是考虑怎么建树了,由于数的范围较大,但给的
区间比较小,所以可以离散化一下。但这题的离散化有些特殊,不能普通的离散化。举一个例子给你3个区间
(1,10)(1,6)(8,10)正常离散化后是(1,4)(1,2)(3,4)结果是2但是正确答案是1!,如何解决这个问题呢?可以将两个
相差大于1的数离散化时在他与下一个之间插入一个值,如给的例子离散化后的结果(1,7)(1,3)(5,7)及将1,6,8,10离散化为
1,(2),3,(4),5,(6),7(括号中的数为插入的值。
 
 
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 2e5 + 10;
int a[M] , b[M] , c[2 * M] , d[2 * M] , e[4 * M];
struct TnT {
int l , r , num , add;
}T[M << 2];
int re;
void push(int p) {
if(T[p].add) {
T[p << 1].num = (T[p << 1].r - T[p << 1].l + 1);
T[(p << 1) | 1].num = (T[(p << 1) | 1].r - T[(p << 1) | 1].l + 1);
T[p << 1].add = T[p].add;
T[(p << 1) | 1].add = T[p].add;
T[p].add = 0;
}
}
void build(int l , int r , int p) {
int mid = (l + r) >> 1;
T[p].l = l , T[p].r = r , T[p].num = 0 , T[p].add = 0;
if(T[p].l == T[p].r) {
return ;
}
build(l , mid , p << 1);
build(mid + 1 , r , (p << 1) | 1);
T[p].num = T[p << 1].num + T[(p << 1) | 1].num;
}
void updata(int l , int r , int p) {
int mid = (T[p].l + T[p].r) >> 1;
if(T[p].l == l && T[p].r == r) {
T[p].add = 1;
T[p].num = (r - l + 1);
return ;
}
push(p);
if(mid < l) {
updata(l , r , (p << 1) | 1);
}
else if(mid >= r) {
updata(l , r , p << 1);
}
else {
updata(l , mid , p << 1);
updata(mid + 1 , r , (p << 1) | 1);
}
T[p].num = T[p << 1].num + T[(p << 1) | 1].num;
}
int query(int l , int r , int p) {
int mid = (T[p].l + T[p].r) >> 1;
if(T[p].l == l && T[p].r == r) {
return T[p].num;
}
push(p);
T[p].num = T[p << 1].num + T[(p << 1) | 1].num;
if(mid < l) {
return query(l , r , (p << 1) | 1);
}
else if(mid >= r) {
return query(l , r , p << 1);
}
else {
return query(l , mid , p << 1) + query(mid + 1 , r , (p << 1) | 1);
}
}
int search(int ll, int hh, int xx) {
int mm;
while (ll <= hh) {
mm = (ll + hh) >> 1;
if (e[mm] == xx) return mm;
else if (e[mm] > xx) hh = mm - 1;
else ll = mm + 1;
}
return -1;
}
int main()
{
int t;
scanf("%d" , &t);
while(t--) {
int n;
scanf("%d" , &n);
int gg = 0;
for(int i = 1 ; i <= n ; i++) {
scanf("%d%d" , &a[i] , &b[i]);
c[++gg] = a[i];
c[++gg] = b[i];
}
sort(c + 1 , c + gg + 1);
int mm = 0;
c[gg + 1] = -1;
for(int i = 1 ; i <= gg ; i++) {
if(c[i] != c[i + 1]) {
d[++mm] = c[i];
}
}
e[1] = d[1];
int mt = 1;
for(int i = 2 ; i <= mm ; i++) {
if(d[i] - d[i - 1] > 1) {
e[++mt] = d[i - 1] + 1;
e[++mt] = d[i];
}
else {
e[++mt] = d[i];
}
}
// for(int i = 1 ; i <= mt ; i++) {
// cout << e[i] << ' ';
// }
build(1 , mt + 1 , 1);
int count = 0;
for(int i = n ; i >= 1 ; i--) {
int r = search(1 , mt , b[i]);
int l = search(1 , mt , a[i]);
re = query(l , r , 1);
//cout << re << endl;
if(re < r - l + 1) {
count++;
}
updata(l , r , 1);
}
printf("%d\n" , count);
}
return 0;
}

poj2528 Mayor's posters(线段树区间修改+特殊离散化)的更多相关文章

  1. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  2. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  3. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  4. poj2528 Mayor's posters(线段树区间覆盖)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 50888   Accepted: 14737 ...

  5. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  6. POJ2528 Mayor's posters —— 线段树染色 + 离散化

    题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...

  7. [poj2528] Mayor's posters (线段树+离散化)

    线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...

  8. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  9. poj2528 Mayor's posters(线段树之成段更新)

    Mayor's posters Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 37346Accepted: 10864 Descr ...

随机推荐

  1. Java中Timer和TimerTask来实现计时器循环触发

    package xian; import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.Fi ...

  2. 配置多个JDK存在的问题与解决方案 (亲测可用)

    安装多个JDK时的技巧 (亲测可用) 我的电脑本来是JDK8的,后来的想在不同的JDK版本下测试JDK的垃圾回收器. 一开始的的思路是,先安装JDK,为每个JDK配置自己的家目录,然后在想用哪个版本的 ...

  3. selenium定时签到程序

    selenium定时签到程序 定时任务 # -*- coding: utf-8 -*- import time import os import sched import datetime from ...

  4. Tomcat 单(多)实例部署使用

    一.前言 (一).概述 Tomcat 是由 Apache 开发的一个 Servlet 容器,实现了对 Servlet 和 JSP 的支持,并提供了作为Web服务器的一些特有功能,如Tomcat管理和控 ...

  5. 最全数据分析资料汇总(含python、爬虫、数据库、大数据、tableau、统计学等)

    一.Python基础 Python简明教程(Python3) Python3.7.4官方中文文档 Python标准库中文版 廖雪峰 Python 3 中文教程 Python 3.3 官方教程中文版 P ...

  6. Java 设置PDF文档浏览偏好

    在查看PDF文档时,可进行一些浏览偏好设置,例如是否全屏浏览.隐藏或显示菜单栏/工具栏.设置页面布局模式等,下面将通过Java编程的方式来演示如何设置. 使用工具: Free Spire.PDF fo ...

  7. 手摸手,带你用vue实现后台管理权限系统及顶栏三级菜单显示

    手摸手,带你用vue实现后台管理权限系统及顶栏三级菜单显示 效果演示地址 项目demo展示 重要功能总结 权限功能的实现 权限路由思路: 根据用户登录的roles信息与路由中配置的roles信息进行比 ...

  8. zookeeper中的分布式一致性协议

    1. zookeeper中的一致性协议-ZAB协议 在深入了解ZK之前,相信很多同学都会认为ZK就是Paxos算法的一个实现.但事实上,ZK并没有完全采用Paxos算法,而是使用了一种称为ZooKee ...

  9. 1.2模板templates

    一.模板使用 1. 配置模板目录 如果命令行创建的项目,需要手动配置模板文件目录,如果是Pycharm创建的项目,则无需配置 在项目根目录下创建模板目录,比如叫 templates,后续开发模板文件会 ...

  10. (二十三)c#Winform自定义控件-等待窗体

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...