Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri. 

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

 
题意:给你一系列的区间有顺序的,按顺序将给定区间染上各不相同的颜色,最后问你一共能看到几种颜色。
 
我的想法是倒过来考虑,因为在最后涂的颜色不会被覆盖掉。染完色就讲这个区间全部赋值为1,到下个区间如果这个区间内所有值都为1,
那么这个颜色就看不到了,被覆盖掉了。实现这种方法可以借助线段树区间更新,接下来就是考虑怎么建树了,由于数的范围较大,但给的
区间比较小,所以可以离散化一下。但这题的离散化有些特殊,不能普通的离散化。举一个例子给你3个区间
(1,10)(1,6)(8,10)正常离散化后是(1,4)(1,2)(3,4)结果是2但是正确答案是1!,如何解决这个问题呢?可以将两个
相差大于1的数离散化时在他与下一个之间插入一个值,如给的例子离散化后的结果(1,7)(1,3)(5,7)及将1,6,8,10离散化为
1,(2),3,(4),5,(6),7(括号中的数为插入的值。
 
 
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 2e5 + 10;
int a[M] , b[M] , c[2 * M] , d[2 * M] , e[4 * M];
struct TnT {
int l , r , num , add;
}T[M << 2];
int re;
void push(int p) {
if(T[p].add) {
T[p << 1].num = (T[p << 1].r - T[p << 1].l + 1);
T[(p << 1) | 1].num = (T[(p << 1) | 1].r - T[(p << 1) | 1].l + 1);
T[p << 1].add = T[p].add;
T[(p << 1) | 1].add = T[p].add;
T[p].add = 0;
}
}
void build(int l , int r , int p) {
int mid = (l + r) >> 1;
T[p].l = l , T[p].r = r , T[p].num = 0 , T[p].add = 0;
if(T[p].l == T[p].r) {
return ;
}
build(l , mid , p << 1);
build(mid + 1 , r , (p << 1) | 1);
T[p].num = T[p << 1].num + T[(p << 1) | 1].num;
}
void updata(int l , int r , int p) {
int mid = (T[p].l + T[p].r) >> 1;
if(T[p].l == l && T[p].r == r) {
T[p].add = 1;
T[p].num = (r - l + 1);
return ;
}
push(p);
if(mid < l) {
updata(l , r , (p << 1) | 1);
}
else if(mid >= r) {
updata(l , r , p << 1);
}
else {
updata(l , mid , p << 1);
updata(mid + 1 , r , (p << 1) | 1);
}
T[p].num = T[p << 1].num + T[(p << 1) | 1].num;
}
int query(int l , int r , int p) {
int mid = (T[p].l + T[p].r) >> 1;
if(T[p].l == l && T[p].r == r) {
return T[p].num;
}
push(p);
T[p].num = T[p << 1].num + T[(p << 1) | 1].num;
if(mid < l) {
return query(l , r , (p << 1) | 1);
}
else if(mid >= r) {
return query(l , r , p << 1);
}
else {
return query(l , mid , p << 1) + query(mid + 1 , r , (p << 1) | 1);
}
}
int search(int ll, int hh, int xx) {
int mm;
while (ll <= hh) {
mm = (ll + hh) >> 1;
if (e[mm] == xx) return mm;
else if (e[mm] > xx) hh = mm - 1;
else ll = mm + 1;
}
return -1;
}
int main()
{
int t;
scanf("%d" , &t);
while(t--) {
int n;
scanf("%d" , &n);
int gg = 0;
for(int i = 1 ; i <= n ; i++) {
scanf("%d%d" , &a[i] , &b[i]);
c[++gg] = a[i];
c[++gg] = b[i];
}
sort(c + 1 , c + gg + 1);
int mm = 0;
c[gg + 1] = -1;
for(int i = 1 ; i <= gg ; i++) {
if(c[i] != c[i + 1]) {
d[++mm] = c[i];
}
}
e[1] = d[1];
int mt = 1;
for(int i = 2 ; i <= mm ; i++) {
if(d[i] - d[i - 1] > 1) {
e[++mt] = d[i - 1] + 1;
e[++mt] = d[i];
}
else {
e[++mt] = d[i];
}
}
// for(int i = 1 ; i <= mt ; i++) {
// cout << e[i] << ' ';
// }
build(1 , mt + 1 , 1);
int count = 0;
for(int i = n ; i >= 1 ; i--) {
int r = search(1 , mt , b[i]);
int l = search(1 , mt , a[i]);
re = query(l , r , 1);
//cout << re << endl;
if(re < r - l + 1) {
count++;
}
updata(l , r , 1);
}
printf("%d\n" , count);
}
return 0;
}

poj2528 Mayor's posters(线段树区间修改+特殊离散化)的更多相关文章

  1. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  2. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  3. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  4. poj2528 Mayor's posters(线段树区间覆盖)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 50888   Accepted: 14737 ...

  5. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  6. POJ2528 Mayor's posters —— 线段树染色 + 离散化

    题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...

  7. [poj2528] Mayor's posters (线段树+离散化)

    线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...

  8. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  9. poj2528 Mayor's posters(线段树之成段更新)

    Mayor's posters Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 37346Accepted: 10864 Descr ...

随机推荐

  1. Zabbix在 windows下监控网卡

    1.zabbix自定义监控Windows服务器的原理 Zabbix为Windows服务器的监控提供了PerfCounter(性能计数器)这个功能.Zabbix客户端通过PerfCounter获取Win ...

  2. 【Java例题】8.2 手工编写字符串统计的可视化程序

      2. 手工编写字符串统计的可视化程序. 一个Frame窗体容器,布局为null,两个TextField组件,一个Button组件. Button组件上添加ActionEvent事件监听器Actio ...

  3. java根据经纬度查询门店地理位置-完美解决附近门店问题

    1.首先我们需要创建一个门店表如下: CREATE TABLE `app_store` ( `store_id` ) NOT NULL AUTO_INCREMENT COMMENT '发布id', ` ...

  4. java 学习路线、java 入门、java自学、java 教程

    以前学习知识都是用到什么学什么,不是很系统.今天看到一个网站感觉挺不错的,分享给大家. 这个页面是学习路线功能的简介,如下图 ​ 点击选择学习路线 ​ 进入后可以选择循序渐进或者由终至始 ​ 上图标出 ...

  5. strstr函数使用中的一个错误解决

    最近使用ESP8266的时候,联网的过程中需要使用strstr函数来读取串口发来的某些重要信息, 使用strstr函数发现某些时候能够正常返回需要寻找的字符串的指针,有些时候找不到,后来发现原来是这样 ...

  6. 简单设计企业级JOB平台

    前言 在企业级项目中有许多能够用到定时任务的场景例如: 在某个时间点统一给某些用户发送邮件信息 接口表数据发送 某月某日更新报表数据 ...... 目前我们使用SpringBoot快速整合Quartz ...

  7. Opengl_入门学习分享和记录_02_渲染管线(一)顶点输入

    现在前面的废话:最近好事不断!十分开心!生活真美好! 好了今天要梳理一下,顶点输入的具体过程,同样也是渲染管线中的第一个阶段的详细过程的介绍.之前介绍过,OpenGL操作的是一组3D坐标,所以我们的输 ...

  8. [Spring cloud 一步步实现广告系统] 17. 根据流量类型查询广告

    广告检索服务 功能介绍 媒体方(手机APP打开的展示广告,走在路上看到的大屏幕广告等等) 请求数据对象实现 从上图我们可以看出,在媒体方向我们的广告检索系统发起请求的时候,请求中会有很多的请求参数信息 ...

  9. SpringBoot:Mybatis + Druid 数据访问

    西部开源-秦疆老师:基于SpringBoot 2.1.7 的博客教程 秦老师交流Q群号: 664386224 未授权禁止转载!编辑不易 , 转发请注明出处!防君子不防小人,共勉! 简介 对于数据访问层 ...

  10. (三十五)c#Winform自定义控件-Tab页

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...