小书匠深度学习

分类方法常用的评估模型好坏的方法.

0.预设问题

假设我现在有一个二分类任务,是分析100封邮件是否是垃圾邮件,其中不是垃圾邮件有65封,是垃圾邮件有35封.模型最终给邮件的结论只有两个:是垃圾邮件与 不是垃圾邮件.

经过自己的努力,自己设计了模型,得到了结果,分类结果如下:

  • 不是垃圾邮件70封(其中真实不是垃圾邮件60封,是垃圾邮件有10封)
  • 是垃圾邮件30封(其中真实是垃圾邮件25封,不是垃圾邮件5封)

现在我们设置,不是垃圾邮件.为正样本,是垃圾邮件为负样本

我们一般使用四个符号表示预测的所有情况:

  • TP(真阳性):正样本被正确预测为正样本,例子中的60
  • FP(假阳性):负样本被错误预测为正样本,例子中的10
  • TN(真阴性):负样本被正确预测为负样本,例子中的25
  • FN(假阴性):正样本被错误预测为负样本,例子中的5

1.评价方法介绍

先看最终的计算公式:

1.Precision(精确率)

关注预测为正样本的数据(可能包含负样本)中,真实正样本的比例

计算公式

例子解释:对上前面例子,关注的部分就是预测结果的70封不是垃圾邮件中真实不是垃圾邮件占该预测结果的比率,现在Precision=60/(600+10)=85.71%

2.Recall(召回率)

关注真实正样本的数据(不包含任何负样本)中,正确预测的比例

计算公式

例子解释:对上前面例子,关注的部分就是真实有65封不是垃圾邮件,这其中你的预测结果中有多少预测正确了,Recall=60/(60+5)=92.31%

3.F-score中β值的介绍

β是用来平衡Precision,Recall在F-score计算中的权重,取值情况有以下三种:

  • 如果取1,表示Precision与Recall一样重要
  • 如果取小于1,表示Precision比Recall重要
  • 如果取大于1,表示Recall比Precision重要

一般情况下,β取1,认为两个指标一样重要.此时F-score的计算公式为:

前面计算的结果,得到Fscore=(2*0.8571*0.9231)/(0.8571+0.9231)=88.89%

3.其他考虑

预测模型无非就是两个结果

  • 准确预测(不管是正样子预测为正样本,还是负样本预测为负样本)
  • 错误预测

那我就可以直接按照下面的公式求预测准确率,用这个值来评估模型准确率不就行了

那为什么还要那么复杂算各种值.理由是一般而言:负样本远大于正样本。

可以想象,两个模型的TN变化不大的情况下,但是TP在两个模型上有不同的值,TN>>TP是不是可以推断出:两个模型的(TN+TP)近似相等.这不就意味着两个模型按照以上公式计算的Accuracy近似相等了.那用这个指标有什么用!!!

所以说,对于这种情况的二分类问题,一般使用Fscore去评估模型.

需要注意的是:Fscore只用来评估二分类的模型,Accuracy没有这限制

参考

1.机器学习中的 precision、recall、accuracy、F1 Score

2.分类模型的评估方法-F分数(F-Score)

分类模型的评价指标Fscore的更多相关文章

  1. 【AUC】二分类模型的评价指标ROC Curve

    AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,acc ...

  2. 分类模型的性能评价指标(Classification Model Performance Evaluation Metric)

    二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错 ...

  3. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  4. 笔记︱风控分类模型种类(决策、排序)比较与模型评估体系(ROC/gini/KS/lift)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...

  5. MXNET:分类模型

    线性回归模型适用于输出为连续值的情景,例如输出为房价.在其他情景中,模型输出还可以是一个离散值,例如图片类别.对于这样的分类问题,我们可以使用分类模型,例如softmax回归. 为了便于讨论,让我们假 ...

  6. Spark学习笔记——构建分类模型

    Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术, ...

  7. 利用libsvm-mat建立分类模型model参数解密[zz from faruto]

    本帖子主要就是讲解利用libsvm-mat工具箱建立分类(回归模型)后,得到的模型model里面参数的意义都是神马?以及如果通过model得到相应模型的表达式,这里主要以分类问题为例子. 测试数据使用 ...

  8. Spark机器学习4·分类模型(spark-shell)

    线性模型 逻辑回归--逻辑损失(logistic loss) 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss) 朴素贝叶斯(Naive Ba ...

  9. sklearn特征选择和分类模型

    sklearn特征选择和分类模型 数据格式: 这里.原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式. s ...

随机推荐

  1. 完美解决SpringMVC中静态资源无法找到(No mapping found for HTTP request with URI)问题

    https://blog.csdn.net/kingmax54212008/article/details/79330308 今天遇到一个比较新奇的问题,但是也应该是使用spring MVC框架时由于 ...

  2. 关于MVC与三层架构

    详情 回答一: 当然啊,你要明白三层架构的MVC的区别和联系: 三层架构是最基本的项目分层结果,而MVC则是三层架构的一个变体,MVC是一种好的开发模式.首先你要明白MVC分别代表的是什么意思. M  ...

  3. jquery.validate.unobtrusive的使用

    应用 一.引入 <script src="Scripts/jquery-1.7.1.min.js"></script> <script src=&qu ...

  4. 关于BASE 24 ,BASE 64原理以及实现程序

    关于BASE 24 ,BASE 64原理以及实现程序 来源 https://wangye.org/blog/archives/5/ 可能很多人听说过Base64编码,很少有人听说过Base24编码,B ...

  5. 虚拟化x86的三种途径

    虚拟化x86的三种途径 作者:缪天翔链接:https://www.zhihu.com/question/20145026/answer/34527331 x86上的全系统虚拟化有三种主要的途径: 二进 ...

  6. Django:RestFramework之-------版本控制

    6.版本控制 从URL通过get传参获取版本. 6.1自定义版本控制 from rest_framework.views import APIView class ParamVersion(objec ...

  7. 服务上的图片直接在浏览器上可以打开,但是在img上报404错误处理方法

    在index.html中添加代码如下 <meta name="referrer" content="no-referrer" /> 如果还是存在问题 ...

  8. Java 堆内存 新生代 (转)

    Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象.在 Java 中,堆被划分成两个不同的区域:新生代 ( Young ).老年代 ( Old ).新生代 ( You ...

  9. spring data jpa 表关联设置用户表关联角色表配置

    User 表: @ManyToMany(cascade = { CascadeType.MERGE }) @JsonIgnore @JoinTable(name = "UserRole&qu ...

  10. HTTP认识

    一.相关名词解释 1. 超文本:是指包含指向其他文档的超链接的文本 2. 万维网:简称web,是一个分布式的超媒体系统,它是超文本系统的扩充,以客户-服务器方式工作 3. 超媒体:文档包含文本,图片, ...