题意还算简洁明了,加上有道翻译凑过着读完了题。题意大体上是 给你 个多米诺骨牌, 给出每个骨牌两端的数字, 只有数字相同才可以推到, 比如 2-3和3-2。你可以旋转这些多米诺骨牌, 输出一个可以全部推到的方案, 如果没有 ,输出 No solution。

第一眼看上去像爆搜, 但是 n 最大到100, 时限竟然只有0.25s,铁定超时, 换个思路, 想不出来, 看了题解,才发现原来是图论题,我们把 0~6 当做点,把每个骨牌当做边, 这样构成了一个图, 我们需要求得就是 遍历所有的边且不重复

这个可以算是一个 欧拉路 模板题,注意,是 欧拉路, 不是欧拉回路 ,被坑了好久。

欧拉路和欧拉回路都是一笔画问题, 两者都需要满足一个必要条件 : 度数为奇数的要么没有, 要么有2个。 度数就是这个点连得边的条数。

先说欧拉回路, 欧拉回路由于需要回到原点, 所以一定没有度数为奇的点, 只要从任意一点 dfs ,走过的边不再走, 直到无边可走, 就是欧拉回路,此时一定是在原点。

但是,欧拉路不同, 欧拉路可以不回到原点, 这导致 dfs 有可能导致死胡同 , 看一个例子 :

在这个例子里, 如果从 3 开始 dfs, 我们有可能回走到 2 ,然后走到 1, 这时我们发现无路可走了, 但这本应是一个一笔画, 只要从 1 出发就可以了,但是我们在程序里不好判断从哪个点开始, 所以, 引入欧拉路的求法:

从任意一个度数为奇的点开始,仍然 dfs,但是 我们不一开始就把这个点加入答案, 而是先任选和这个点相连的一条边, 继续向下dfs, 然后在把这个店加入答案,就等于是倒序输出。这样很巧妙的解决了上面说的问题。光这么说可能不太好理解,一看代码立刻就能明白。

void ss(int now)
{
遍历每一条和这个点相连的边
{
标记已经走过这条边,以后不再走
ss(和它相邻的点);
把现在这个点加入答案
}
}

如此一来就可以了, 但要注意,要判断此图是否联通, 只需判断你求出的边数和骨牌数是否相等就行了,上代码:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define N 110 * 2
#define M 10
using namespace std; int n, du[M] = {};
int p[M], next[N*], v[N*], zheng[N*], bnum = -, kexing[N*], num[N*];
int ans[N][], ansnum = ; void addbian(int x, int y, int now)
{
bnum++; next[bnum] = p[x]; p[x] = bnum;
v[bnum] = y; zheng[bnum] = ; kexing[bnum] = ; num[bnum] = now;
bnum++; next[bnum] = p[y]; p[y] = bnum;
v[bnum] = x; zheng[bnum] = ; kexing[bnum] = ; num[bnum] = now;
} void ss(int now)
{
int k = p[now];
while (k != -)
{
if (kexing[k])
{
kexing[k] = ; kexing[k^] = ;
ss(v[k]);
ansnum++;
ans[ansnum][] = num[k^];
ans[ansnum][] = zheng[k^];
}
k = next[k];
}
} int main()
{
scanf("%d", &n);
for (int i = ; i <= ; ++i) p[i] = -;
for (int i = ; i <= n; ++i)
{
int x, y;
scanf("%d%d", &x, &y);
du[x]++; du[y]++;
addbian(x, y, i);
}
if (n == )
{
printf("No solution\n");
return ;
}
int jnum = , start = -;
for (int i = ; i <= ; ++i)
if (du[i] % != )
{
jnum++; start = i;
}
if (jnum != && jnum != )
{
printf("No solution\n");
return ;
}
if (start == -)
for (int i = ; i <= ; ++i)
if (du[i] != ) start = i;
ss(start);
if (ansnum < n)
{
printf("No solution\n");
return ;
}
for (int i = ; i <= n; ++i)
{
printf("%d ",ans[i][]);
if (ans[i][]) printf("+\n");
else printf("-\n");
}
}

sgu 101 domino的更多相关文章

  1. SGU 101 Domino (输出欧拉路径)

    101. Domino time limit per test: 0.25 sec. memory limit per test: 4096 KB Dominoes – game played wit ...

  2. SGU 101.Domino( 欧拉路径 )

    求欧拉路径...直接dfs即可,时间复杂度O(N) -------------------------------------------------------------------------- ...

  3. sgu 101 Domino 解题报告及测试数据

    101. Domino time limit per test: 0.25 sec. memory limit per test: 4096 KB 题解: 求多米诺骨牌按照一定方式放置能否使相邻的位置 ...

  4. SGU 101 Domino【欧拉路径】

    题目链接: http://acm.sgu.ru/problem.php?contest=0&problem=101 题意: N个多米诺骨牌,每个骨牌左右两侧分别有一个0~6的整数(骨牌可以旋转 ...

  5. SGU 101.Domino (欧拉路)

    时间限制: 0.5 sec 空间限制: 4096 KB 描述 多米诺骨牌,一种用小的方的木块或其他材料,每个都被一些点在面上标记,这些木块通常被称为骨牌.每个骨牌的面都被一条线分成两个   方形,两边 ...

  6. SGU 101 Domino 题解

    鉴于SGU题目难度较大,AC后便给出算法并发布博文,代码则写得较满意后再补上.——icedream61 题目简述:暂略 AC人数:3609(2015年7月20日) 算法: 这题就是一笔画,最多只有7个 ...

  7. ACM: SGU 101 Domino- 欧拉回路-并查集

    sgu 101 - Domino Time Limit:250MS     Memory Limit:4096KB     64bit IO Format:%I64d & %I64u Desc ...

  8. SGU 101

    SGU 101,郁闷,想出来算法,但是不知道是哪个地方的问题,wa在第四个test上. #include <iostream> #include <vector> #inclu ...

  9. Domino - SGU 101 (欧拉路径)

    题目大意:这是一个多米诺骨游戏,这个游戏的规则就是一个连着一个,现在给出 N 个多米诺,每个多米诺两边都有一个编号,相邻的多米诺的编号要一致,当然多米诺是可以翻转的(翻转就加‘-’,不翻转是‘+’), ...

随机推荐

  1. [原创]Android秒杀倒计时自定义TextView

    自定义TextView控件TimeTextView代码: import android.content.Context; import android.content.res.TypedArray; ...

  2. JavaScript要点(十) HTML DOM - 改变 HTML

    HTML DOM 允许 JavaScript 改变 HTML 元素的内容. A.改变 HTML 输出流 JavaScript 能够创建动态的 HTML 内容: 今天的日期是: Thu Oct 13 2 ...

  3. hdu 2844 Coins (多重背包)

    题意是给你几个数,再给你这几个数的可以用的个数,然后随机找几个数来累加, 让我算可以累加得到的数的种数! 解题思路:先将背包初始化为-1,再用多重背包计算,最后检索,若bb[i]==i,则说明i这个数 ...

  4. 有关AES加密的问题

    遇到一个项目,需要用AES加密密码,android的已经写好了,java源码: private static final String AES_OPTIONS = "AES/ECB/PKCS ...

  5. HOG特征-理解篇

    网上去找关于HOG的资料,发现理解性的较少,并且较为冗长,为方便大家理解便自己写了篇,希望能对奋斗在特征提取第一线的同志们有所帮助: HOG即histogram of oriented gradien ...

  6. android Animation 动画效果介绍

    Android的animation由四种类型组成 XML中 alpha 渐变透明度动画效果 scale 渐变尺寸伸缩动画效果 translate 画面转换位置移动动画效果 rotate 画面转移旋转动 ...

  7. 跟我学solr---吐槽一下,我的文章被抄袭啦

    今天闲来无事,就在在百度上搜了下面"跟我学solr",看看这几周来自己的努力成果怎么样,不搜还好,搜了就图学了.被原封不动地抄袭了!并且抄袭的文章还在百度排名第一,我自己的却被排到 ...

  8. 优麒麟(UbuntuKylin)不是国产Linux操作系统

    2014年5月10日,CCTV新闻频道"新闻直播间"栏目播报了"谁来替代Windows XP,工信部希望用户使用国产操作系统"报道.同一时候,央视也报道了眼下包 ...

  9. 九、Socket之TCP编程

    TCP简介 TCP是Transmission Control Protocol(传输控制协议)的简称,是TCP/IP体系中面向连接的运输层协议,在网络中提供全双工的和可靠的服务. TCP最主要的特点: ...

  10. mod_rewrite模块详解

    mod_rewrite模块提供了一个基于规则的(使用正则表达式分析器的)实时转向URL请求的引擎. 支持每个规则可以拥有不限数量的规则以及附加条件规则的灵活而且强大的URL操作机制. 此URL操作可以 ...