Division

                      Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
                             Total Submission(s): 3984    Accepted Submission(s): 1527

Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
Let
T be a set of integers. Let the MIN be the minimum integer in T and MAX
be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now
given an integer set S, we want to find out M subsets S1, S2, …, SM of
S, such that

and the total cost of each subset is minimal.

 
Input
The input contains multiple test cases.
In
the first line of the input there’s an integer T which is the number of
test cases. Then the description of T test cases will be given.
For
any test case, the first line contains two integers N (≤ 10,000) and M
(≤ 5,000). N is the number of elements in S (may be duplicated). M is
the number of subsets that we want to get. In the next line, there will
be N integers giving set S.

 
Output
For
each test case, output one line containing exactly one integer, the
minimal total cost. Take a look at the sample output for format.

 
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
 
Sample Output
Case 1: 1
Case 2: 18

Hint

The answer will fit into a 32-bit signed integer.

 
Source
 

【思路】

斜率优化+分配式DP。

设f[i][j]表示将前i个分作j个集合所得最小消费,则有转移方程式:

f[i][j]=min{ f[k][j-1]+(A[k]-A[j+1])^2 }

若有k>l,且决策k优于决策l则有:

f[k][j-1]-f[l][j-1]+sq(A[k+1])-sq(A[l+1]) <= 2*(A[k+1]-A[l+1])*A[i]

先进行j循环枚举f[][j],每一层维护一个单调队列即可。

乘除耗费时间悬殊,如果直接除这个题就超时了。

【代码】

 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std; typedef double Do;
const int N = 1e4+;
const int M = +; int f[N][M],A[N],q[N];
int n,m,L,R;
int sq(int x) { return x*x; }
int UP(int l,int k,int j) {
return f[k][j-]-f[l][j-]+sq(A[k+])-sq(A[l+]);
}
int DN(int l,int k,int j) {
return *(A[k+]-A[l+]);
}
void read(int& x) {
char c=getchar(); while(!isdigit(c)) c=getchar();
x=; while(isdigit(c)) x=x*+c-'' , c=getchar();
}
int main() {
int T,kase=;
read(T);
while(T--) {
read(n),read(m);
for(int i=;i<=n;i++) read(A[i]);
sort(A+,A+n+);
for(int i=;i<=n;i++) f[i][]=sq(A[i]-A[]); //初始化第一层
for(int j=;j<=m;j++) {
L=R=;
for(int i=;i<=n;i++) {
while(L<R && UP(q[L],q[L+],j)<=A[i]*DN(q[L],q[L+],j)) L++;
int t=q[L];
f[i][j]=f[t][j-]+sq(A[i]-A[t+]);
while(L<R && UP(q[R-],q[R],j)*DN(q[R],i,j)>=UP(q[R],i,j)*DN(q[R-],q[R],j)) R--;
q[++R]=i;
}
}
printf("Case %d: %d\n",++kase,f[n][m]);
}
return ;
}

HDU 3480 Division(斜率优化+二维DP)的更多相关文章

  1. hdu 3480 Division(斜率优化DP)

    题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...

  2. HDU 3480 - Division - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  3. (hdu)5234 Happy birthday 二维dp+01背包

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5234 Problem Description Today is Gorwin’s birt ...

  4. HDU 4901 The Romantic Hero(二维dp)

    题目大意:给你n个数字,然后分成两份,前边的一份里面的元素进行异或,后面的一份里面的元素进行与.分的时候依照给的先后数序取数,后面的里面的全部的元素的下标一定比前面的大.问你有多上种放元素的方法能够使 ...

  5. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  6. HDU - 2159 FATE(二维dp之01背包问题)

    题目: ​ 思路: 二维dp,完全背包,状态转移方程dp[i][z] = max(dp[i][z], dp[i-1][z-a[j]]+b[j]),dp[i][z]表示在杀i个怪,消耗z个容忍度的情况下 ...

  7. 洛谷p1732 活蹦乱跳的香穗子 二维DP

    今天不BB了,直接帖原题吧  地址>>https://www.luogu.org/problem/show?pid=1732<< 题目描述 香穗子在田野上调蘑菇!她跳啊跳,发现 ...

  8. 传纸条 NOIP2008 洛谷1006 二维dp

    二维dp 扯淡 一道比较基本的入门难度的二维dp,类似于那道方格取数,不过走过一次的点下次不能再走(看提交记录里面好像走过一次的加一次a[i][j]的也AC了,,),我记得当年那道方格取数死活听不懂, ...

  9. 洛谷P1048 采药 二维dp化一维

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个 ...

随机推荐

  1. jQuery实现多级手风琴树形下拉菜单(源码)

    前几天因为公司的菜单要调整,公司的UI框架是不支持的,所以就自己在网上找了一个下拉菜单,可以支持多级菜单数据的,菜单数据是从xml文件中配置后读取的,网上有许多这方面的例子感觉不是很好用,就打了个包贴 ...

  2. MSSQL备份及数据迁移

    版本:MSSQL 2008 备份情景:从A服务器的SQL 迁移到B服务器,并且数据也迁移过去. 操作环境:A服务器:WINDOWS7  B服务器:WINDOWS8.1   辅助工具:VNC 首先从A服 ...

  3. autoreleasepool的笔记

    1.autoreleasepool总是会被问到,放在自动释放池中的对象合适被释放?理解不正确的答案:{}出了大括号.出了作用域等等.个人认为参考答案是,1.在不是手动添加的AutoreleasePoo ...

  4. CSS Padding(填充)

    CSS Padding(填充)属性定义元素边框与元素内容之间的空间. Padding(填充) 当元素的 Padding(填充)(内边距)被清除时,所"释放"的区域将会受到元素背景颜 ...

  5. Python传参数最简单易懂的描述

    关于,python的传参,很多人会搞得一头雾水,我也跟朋友讨论多次,最终通过实验,得到结论.   一.所有传递都是引用传递 二.在函数内使用[变量名]=,相当于定义啦一个局部变量   OK,一段简单的 ...

  6. python细节

    1.assert 断言语句,可判断一句话真假,若为假会抛出AssertionError. eg. assert 1==1     assert 1==2则AssertionError 2.单引号双引号 ...

  7. 【随记】还原SQL Server数据库步骤

    情景:在一台机器上备份数据库,然后在另一台机器上还原数据库,可能会出现错误提示:System.Data.SqlClient.SqlError: 备份集中的数据库备份与现有的 'XXX' 数据库不同. ...

  8. AS3.0声明静态属性和静态方法

    静态属性的变量声明要加static,static var 名称:属性类型=值 静态属性的常量声明要加static或者const,并在声明时就要赋值.static||const var 名称:属性类型= ...

  9. build tree

    有二叉树的前序遍历和后序遍历,构造二叉树 /** * Definition for binary tree * public class TreeNode { * int val; * TreeNod ...

  10. CentOS 6.0 图文安装教程

    CentOS 6.0下载地址:wget http://ftp.riken.jp/Linux/centos/6.0/isos/i386/CentOS-6.0-i386-bin-DVD.iso 下边就是安 ...