Division

                      Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
                             Total Submission(s): 3984    Accepted Submission(s): 1527

Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
Let
T be a set of integers. Let the MIN be the minimum integer in T and MAX
be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now
given an integer set S, we want to find out M subsets S1, S2, …, SM of
S, such that

and the total cost of each subset is minimal.

 
Input
The input contains multiple test cases.
In
the first line of the input there’s an integer T which is the number of
test cases. Then the description of T test cases will be given.
For
any test case, the first line contains two integers N (≤ 10,000) and M
(≤ 5,000). N is the number of elements in S (may be duplicated). M is
the number of subsets that we want to get. In the next line, there will
be N integers giving set S.

 
Output
For
each test case, output one line containing exactly one integer, the
minimal total cost. Take a look at the sample output for format.

 
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
 
Sample Output
Case 1: 1
Case 2: 18

Hint

The answer will fit into a 32-bit signed integer.

 
Source
 

【思路】

斜率优化+分配式DP。

设f[i][j]表示将前i个分作j个集合所得最小消费,则有转移方程式:

f[i][j]=min{ f[k][j-1]+(A[k]-A[j+1])^2 }

若有k>l,且决策k优于决策l则有:

f[k][j-1]-f[l][j-1]+sq(A[k+1])-sq(A[l+1]) <= 2*(A[k+1]-A[l+1])*A[i]

先进行j循环枚举f[][j],每一层维护一个单调队列即可。

乘除耗费时间悬殊,如果直接除这个题就超时了。

【代码】

 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std; typedef double Do;
const int N = 1e4+;
const int M = +; int f[N][M],A[N],q[N];
int n,m,L,R;
int sq(int x) { return x*x; }
int UP(int l,int k,int j) {
return f[k][j-]-f[l][j-]+sq(A[k+])-sq(A[l+]);
}
int DN(int l,int k,int j) {
return *(A[k+]-A[l+]);
}
void read(int& x) {
char c=getchar(); while(!isdigit(c)) c=getchar();
x=; while(isdigit(c)) x=x*+c-'' , c=getchar();
}
int main() {
int T,kase=;
read(T);
while(T--) {
read(n),read(m);
for(int i=;i<=n;i++) read(A[i]);
sort(A+,A+n+);
for(int i=;i<=n;i++) f[i][]=sq(A[i]-A[]); //初始化第一层
for(int j=;j<=m;j++) {
L=R=;
for(int i=;i<=n;i++) {
while(L<R && UP(q[L],q[L+],j)<=A[i]*DN(q[L],q[L+],j)) L++;
int t=q[L];
f[i][j]=f[t][j-]+sq(A[i]-A[t+]);
while(L<R && UP(q[R-],q[R],j)*DN(q[R],i,j)>=UP(q[R],i,j)*DN(q[R-],q[R],j)) R--;
q[++R]=i;
}
}
printf("Case %d: %d\n",++kase,f[n][m]);
}
return ;
}

HDU 3480 Division(斜率优化+二维DP)的更多相关文章

  1. hdu 3480 Division(斜率优化DP)

    题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...

  2. HDU 3480 - Division - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  3. (hdu)5234 Happy birthday 二维dp+01背包

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5234 Problem Description Today is Gorwin’s birt ...

  4. HDU 4901 The Romantic Hero(二维dp)

    题目大意:给你n个数字,然后分成两份,前边的一份里面的元素进行异或,后面的一份里面的元素进行与.分的时候依照给的先后数序取数,后面的里面的全部的元素的下标一定比前面的大.问你有多上种放元素的方法能够使 ...

  5. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  6. HDU - 2159 FATE(二维dp之01背包问题)

    题目: ​ 思路: 二维dp,完全背包,状态转移方程dp[i][z] = max(dp[i][z], dp[i-1][z-a[j]]+b[j]),dp[i][z]表示在杀i个怪,消耗z个容忍度的情况下 ...

  7. 洛谷p1732 活蹦乱跳的香穗子 二维DP

    今天不BB了,直接帖原题吧  地址>>https://www.luogu.org/problem/show?pid=1732<< 题目描述 香穗子在田野上调蘑菇!她跳啊跳,发现 ...

  8. 传纸条 NOIP2008 洛谷1006 二维dp

    二维dp 扯淡 一道比较基本的入门难度的二维dp,类似于那道方格取数,不过走过一次的点下次不能再走(看提交记录里面好像走过一次的加一次a[i][j]的也AC了,,),我记得当年那道方格取数死活听不懂, ...

  9. 洛谷P1048 采药 二维dp化一维

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个 ...

随机推荐

  1. LINQ数据库连接对象制造工厂

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  2. CodeSmith中SchemaExplorer属性的介绍

    CodeSmith与数据库的联系,在CodeSmith中自带一个程序集SchemaExplorer.dll,这个程序集中的类主要用于获取数据库中各种对象的结构. <%@ Property Nam ...

  3. 详细介绍Linux shell脚本基础学习

    Linux shell脚本基础学习这里我们先来第一讲,介绍shell的语法基础,开头.注释.变量和 环境变量,向大家做一个基础的介绍,虽然不涉及具体东西,但是打好基础是以后学习轻松地前提.1. Lin ...

  4. JAVA学习-基础知识

    1.Java程序都是以类的形式编写的.2.存放源代码的文件叫源文件.(电脑不能直接看懂的,需要编译一下,电脑才能懂)如何编译源文件?用javac命令输入"javac 123.Java&quo ...

  5. Hadoop学习第一天

    1.hadoop量大,数目多. 存储:分布式,集群的概念,管理(主节点.从节点),HDFS. 分析:分布式.并行.离线计算框架,管理(主节点.从节点),MapReduce. 来源:GFS->HD ...

  6. Unity_与android交互

    Unity调用Android代码 方法一: //using让 Local Ref 回收 using(AndroidJavaClass javaClazz = new AndroidJavaClass( ...

  7. jquery data方法取值与js attr取值的区别

    <a data-v="3"></a> jquery data方法的运行机制: 第一次查找dom,使用attributes获取到dom节点值,并将其值存到缓存 ...

  8. 把AS代码链接到fla文件

    在属性里找到类,输入AS脚本的文件名然后点击右边的编辑就可以打开编辑AS脚本的界面,下面为链接代码. package { import flash.display.MovieClip; public ...

  9. Android 下拉刷新控件Android-PullToRefresh

    需要用到一个开源库 Android-PullToRefresh https://github.com/chrisbanes/Android-PullToRefresh ---------------- ...

  10. coder

    #include <iostream>#include <GL/glut.h>using std::cout;using std::endl;float windowWidth ...