上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了不同的数字,并且这些数字都是处于1..N的范围之内,每根木棍都连接着两个不同的小球,并且保证任意两个小球间都不存在两条不同的路径可以互相到达。没错,这次说的还是这棵树玩具的故事!

小Ho的树玩具的质量似乎不是很好,短短玩了几个星期,便掉漆了!

“简直是一场噩梦!”小Ho拿着树玩具眼含热泪道。

“这有什么好忧伤的,自己买点油漆刷一刷不就行了?”小Hi表示不能理解。

“还可以这样?”小Ho顿时兴高采烈了起来,立马跑出去买回来了油漆,但是小Ho身上的钱却不够——于是他只买回了有限的油漆,这些油漆最多能给M个结点涂上颜色,这就意味着小Ho不能够将他心爱的树玩具中的每一个结点都涂上油漆!

小Ho低头思索了半天——他既不想只选一部分结点补漆,也不想找小Hi借钱,但是很快,他想出了一个非常棒的主意:将包含1号结点的一部分连通的结点进行涂漆(这里的连通指的是这一些涂漆的结点可以互相到达并且不会经过没有涂漆的结点),然后将剩下的结点拆掉!

那么究竟选择哪些结点进行涂漆呢?小Ho想了想给每个结点都评上了分——他希望最后留下来,也就是涂漆了的那些结点的评分之和可以尽可能的高!

那么,小Ho该如何做呢?

提示一:树上的动态规划?其实老早就接触过了吧!

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个整数N、M,意义如前文所述。

每组测试数据的第二行为N个整数,其中第i个整数Vi表示标号为i的结点的评分

每组测试数据的第3~N+1行,每行分别描述一根木棍,其中第i+1行为两个整数Ai,Bi,表示第i根木棍连接的两个小球的编号。

对于100%的数据,满足N<=10^2,1<=Ai<=N, 1<=Bi<=N, 1<=Vi<=10^3, 1<=M<=N

小Hi的Tip:那些用数组存储树边的记得要开两倍大小哦!

输出

对于每组测试数据,输出一个整数Ans,表示使得涂漆结点的评分之和最高可能是多少。

样例输入

10 4
370 328 750 930 604 732 159 167 945 210
1 2
2 3
1 4
1 5
4 6
4 7
4 8
6 9
5 10

样例输出

2977

题解:对于每一个根,窝萌买一个子节点的背包即可。注意顺序。
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define PAU putchar(' ')
#define ENT putchar('\n')
using namespace std;
const int maxn=+,maxm=+,inf=-1u>>;
struct ted{int x,y;ted*nxt;}adj[maxm],*fch[maxn],*ms=adj;
void add(int x,int y){
*ms=(ted){x,y,fch[x]};fch[x]=ms++;
*ms=(ted){y,x,fch[y]};fch[y]=ms++;
return;
}
int dp[maxn][maxn],n,m;
void dfs(int x,int fa){
for(ted*e=fch[x];e;e=e->nxt){
int v=e->y;if(v!=fa){dfs(v,x);
for(int c=m;c>;c--)for(int t=;t<c;t++)
dp[x][c]=max(dp[x][c],dp[x][c-t]+dp[v][t]);
}
}return;
}
inline int read(){
int x=,sig=;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')sig=;
for(;isdigit(ch);ch=getchar())x=*x+ch-'';
return sig?x:-x;
}
inline void write(int x){
if(x==){putchar('');return;}if(x<)putchar('-'),x=-x;
int len=,buf[];while(x)buf[len++]=x%,x/=;
for(int i=len-;i>=;i--)putchar(buf[i]+'');return;
}
void init(){
n=read();m=read();
for(int i=;i<=n;i++)dp[i][]=read();
for(int i=;i<n;i++)add(read(),read());
dfs(,);write(dp[][m]);
return;
}
void work(){
return;
}
void print(){
return;
}
int main(){init();work();print();return ;}
												

hiho #1055 : 刷油漆的更多相关文章

  1. hiho 1055 刷油漆 树形dp

    一个简单的树上的背包问题. 代码: #include <iostream> #include <cstdio> #include <cstring> #includ ...

  2. hihoCoder #1055 : 刷油漆 [ 树形dp ]

    传送门 结果:Accepted     提交时间:2015-05-11 10:36:08 #1055 : 刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到 ...

  3. hihoCoder hiho一下 第十二周 #1055 : 刷油漆 (树上DP)

    思路: 只能刷部分节点数m,总节点数n.如果m>=n那么就可以全刷了,那就不用任何算法了.如果m<n那么就要有取舍了.用DP思路,记录下每个节点如果获得到1~m个选择所能获得的最大权值.这 ...

  4. HihoCoder 1055 : 刷油漆 树形DP第一题(对象 点)

    刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了 ...

  5. [hihoCoder] #1055 : 刷油漆

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了不同的数 ...

  6. hihoCoder#1055 : 刷油漆 (树形DP+01背包)

    题目大意:给一棵带点权的树,现在要从根节点开始选出m个连通的节点,使总权值最大. 题目分析:定义状态dp(u,m)表示在以u为根的子树从根节点开始选出m个点连通的最大总权值,则dp(u,m)=max( ...

  7. HihoCoder 1055 刷油漆 (树上背包)

    题目:https://vjudge.net/contest/323605#problem/A 题意:一棵树,让你选择m个点的一个连通块,使得得到的权值最大 思路:树上背包,我们用一个dp数组,dp[i ...

  8. HihoCoder第十二周:刷油漆

    #1055 : 刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球 ...

  9. hiho_1055_刷油漆

    题目大意 一棵树,每个节点都有相应的value值.从根开始选择M个节点相互连通,使得这些节点的value值之和最大. 题目链接:[刷油漆][1] 题目分析 典型的树形dp,dp[i][j] 表示以节点 ...

随机推荐

  1. 小结 iOS 中的 copy

    预备知识 : 内存的栈区 : 由编译器自动分配释放, 存放函数的参数值, 局部变量的值等. 其 操作方式类似于数据结构中的栈. 内存的堆区 : 一般由程序员分配释放, 若程序员不释放, 程序结束时可能 ...

  2. git 指令汇总

    学习git过程中整理的笔记: git add 添加文件到暂存区: git commit -m "更改说明" 提交文件更改: git status 查看当前文件状态: git dif ...

  3. C#生成验证码实例

    常用生成验证码实例封装: /// <summary> /// 生成内存位图 /// </summary> /// <param name="Code" ...

  4. 多列的行列转换(PIVOT,UNPIVOT)

    形式1 形式2 形式3 有时候可能会有这样的需求: 将一张表的所有列名转做为数据的一列数据,将一列数据作为整张表的列名 当列比较多时,只用PIVOT是解决不了的,经过研究,需要将UNPIVOT 和 P ...

  5. Linux 自动更新时间

    1. 从NTP上把时间同步到本地 cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime 2. 更新本地时间 ntpdate us.pool.ntp.o ...

  6. wsdlLocation可以写成项目的相对路劲吗

    如果客户端的代码使用wsdl生成的话,这个地址是从wsdl描述的<service>里的<location>获取的,如果开发过程中服务地址换了,那只能手工来修改了,好像只有一个地 ...

  7. iOS7初体验(2)——单元测试

    在Xcode 4.6及以前的版本,一直觉得单元测试这部分功能做得很鸡肋,用起来感觉很别扭.这一次Xcode 5.0默认就引入了单元测试,赶快来看看看相比以前的版本有什么提升吧!~_~ 1.     首 ...

  8. Objective-C总Runtime的那点事儿(一)消息机制【转】

    RunTime简称运行时.就是系统在运行的时候的一些机制,其中最主要的是消息机制.对于C语言,函数的调用在编译的时候会决定调用哪个函数( C语言的函数调用请看这里 ).编译完成之后直接顺序执行,无任何 ...

  9. AFNETWORKING tabelView没有reloadData,报错unsupported URL

    Error Domain=NSURLErrorDomain Code=-1002 "unsupported URL" UserInfo=0x7f9dc278aa60 {NSUnde ...

  10. iOS支付 IPAPayment demo iTunes Conection里面添加测试帐号,添加商品,实现购买过程

    https://github.com/ccguo/IAPPaymentDemo 发一个demo