作者:桂。

时间:2017-04-03  19:41:26

链接:http://www.cnblogs.com/xingshansi/p/6661230.html


【读书笔记10】

前言

广义逆矩阵可以借助SVD进行求解,这在上一篇文章已经分析。本文主要对SVD进行梳理,主要包括:

  1)特征向量意义;

  2)特征值分解与SVD;

  3)PCA与SVD;

内容为自己的学习记录,其中多有借鉴他人之处,最后一并给出链接。

一、特征向量

第一反应是:啥是特征向量?为什么好好的一个矩阵,要拆成这个模样?先看定义

$Av = \lambda v$

矩阵对应线性变换,可以看到特征向量是这样:线性变换后,只伸缩既不平移、也不旋转。如计算$A^5v$,可以直接用$\lambda^5 v$,省去多少计算?

维基百科有一张图很直观:

她的微笑是不是有熟悉的味道o(^▽^)o?不过这里不解读微笑,看红线→:矩阵线性变换后,方向也发生了改变,所以它不是特征向量; 蓝线→:线性变换之后,方向不变,所以是特征向量。由此也可见,特征向量是一个族,而不是独一无二的。

二、奇异值分解

  A-特征值分解(EVD,Eigenvalues Decomposition)

这里分析酉矩阵,假设矩阵$\bf{B}$具有${\bf{B}} = {\bf{A}}{{\bf{A}}^H}$的形式,根据特征值定义:

根据酉矩阵特性:

${\bf{B}} = {\bf{U}}\Lambda {{\bf{U}}^H}$

这里仍然可以写成求和的形式,这也是显然的:酉矩阵张成的空间,就是每一个维度成分的叠加嘛。

  B-奇异值分解(SVD,Singularly Valuable Decomposition)

根据矩阵变换特性:

其中$\bf{A}$是$m$x$n$的矩阵,$\bf{U_o}$为$m$x$m$,$\bf{V_o}$为$n$x$n$定义$\bf{B}$,并借助EVD进行分析:

因为是酉矩阵,从而${{\bf{U}}_o} = {\bf{U}}$。${\bf{\Sigma }}$为$m$x$n$,且,${s_i} = \sqrt {{\lambda _i}}, i=1,2,...min(m,n)$,至此完成$\bf{U_o}$和${\bf{\Sigma }}$的求解,还剩下$\bf{V_o}$。

对于${\bf{V_o}}$则有:

${\bf{AV_o}} = {\bf{U\Sigma }}$

即${{\bf{U}}^H}{\bf{A}} = {\bf{\Sigma }}{{\bf{V_o}}^H}$,因为有对角阵,转化为向量运算很方便,对于缺失的部分可以借助施密特正交化进行补全。

至此完成SVD分解。

总结SVD思路:

步骤一:利用$AA^H$求解矩阵$U$,并构造$S$;

步骤二:求解$V_o$,并借助施密特正交化构造完整的$V$。

特征值求解、施密特正交化,任何一本线性代数应该都有,所以这里假设特征值分解EVD、施密特正交化直接调用,给出SVD求解的代码(与svd指令等价):

a = [ 1     7     5
1 6 4
2 7 8
10 5 4]';
[E,D] = eig(a*a');
%预处理
[val,pos] = sort(diag(D),'descend');
E = E(:,pos);
D = diag(val);
mina = min(size(a));
%SVD分解
U = E; %完成U求解
S = zeros(size(a));
S(1:mina,1:mina) = diag(sqrt(val(1:mina)));%完成S求解
Vo = [U(:,1:mina)'*a]'./repmat(diag(S)',size(a,2),1);%求解Vo
V = [Vo null(Vo')];%完成V求解,补全正交基,可借助施密特正交化

  

三、PCA与SVD

根据上文分析,可以看出SVD或者EVD都可以分解出特征值以及特征向量。

再来回顾以前PCA一文的求解思路:

  • 步骤一:数据中心化——去均值,根据需要,有的需要归一化——Normalized;
  • 步骤二:求解协方差矩阵;
  • 步骤三:利用特征值分解/奇异值分解 求解特征值以及特征向量
  • 步骤四:利用特征向量构造投影矩阵
  • 步骤五:利用投影矩阵,得出降维的数据。

PCA的核心就是根据特征值的大小/总的比例  确定对应特征向量的个数,从而构造投影矩阵。简而言之:有了特征值、特征向量,也就相当于有了PCA

而EVD/SVD是得到特征值、特征向量的方式,可以说EVD/SVD是PCA的基础,PCA是二者的应用方式。

自适应滤波:奇异值分解SVD的更多相关文章

  1. 矩阵奇异值分解(SVD)及其应用

    机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题

  2. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  3. 特征值分解与奇异值分解(SVD)

    1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...

  4. 奇异值分解(SVD) --- 几何意义

    原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...

  5. 自适应滤波:最小均方误差滤波器(LMS、NLMS)

    作者:桂. 时间:2017-04-02  08:08:31 链接:http://www.cnblogs.com/xingshansi/p/6658203.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  7. 【转载】奇异值分解(SVD)计算过程示例

    原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...

  8. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  9. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  10. 自适应滤波:维纳滤波器——FIR及IIR设计

    作者:桂. 时间:2017-03-23  06:28:45 链接:http://www.cnblogs.com/xingshansi/p/6603263.html [读书笔记02] 前言 仍然是西蒙. ...

随机推荐

  1. ACM 海贼王之伟大航路(深搜剪枝)

    "我是要成为海贼王的男人!" 路飞他们伟大航路行程的起点是罗格镇,终点是拉夫德鲁(那里藏匿着"唯一的大秘宝"--ONE PIECE).而航程中间,则是各式各样的 ...

  2. Javascript 闭包与高阶函数 ( 二 )

    在上一篇 Javascript 闭包与高阶函数 ( 一 )中介绍了两个闭包的作用. 两位大佬留言指点,下来我会再研究闭包的实现原理和Javascript 函数式编程 . 今天接到头条 HR 的邮件,真 ...

  3. 第三章:初识Jquery

    一.Jquery的优势 体积小,压缩后只有100KB左右 强大的选择器 出色的DOM封装 可靠的事件处理机制 出色的浏览器兼容性 使用隐式迭代简化编程 丰富的插件支持 二.Jquery语法 三.DOM ...

  4. 对await(),notify()的理解

    await(),notify()是java Object类的方法.在两个线程同时访问一个对象的时候可以利用这2个方法实现线程的通信.看下面的例子. public class Account { pri ...

  5. WebApi实现通讯加密

    一. 场景介绍: 如题如何有效的,最少量的现有代码侵入从而实现客户端与服务器之间的数据交换加密呢? 二. 探究: 1.需求分析 webapi服务端 有如下接口: public class ApiTes ...

  6. 深入理解ajax系列第三篇——头部信息

    前面的话 每个HTTP请求和响应都会带有相应的头部信息,其中有的对开发人员有用.XHR对象提供了操作头部信息的方法.本文将详细介绍HTTP的头部信息 默认信息 默认情况下,在发送XHR请求的同时,还会 ...

  7. 使用OpenCL

    //函数原型举例 cl_int clGetPlatformInfo(cl_platform_id platform, cl_platform_info param_name, size_t param ...

  8. 超出区域文字显示为省略号或者剪切效果——CSS的生僻操作

    每门语言总有那么一些不太常用,却又不可或缺的语法操作.下面说一下,在HTML文件中,如何设置用 "省略号" 和 "剪切" 代替大量文字的效果. 以下是HTML的 ...

  9. MyBatis从入门到放弃四:一对多关联查询

    前言 上篇学习了一对一关联查询,这篇我们学习一对多关联查询.一对多关联查询关键点则依然是配置resultMap,在resultMap中配置collection属性,别忽略了ofType属性. 搭建开发 ...

  10. HTML5之通信和多线程

    HTML通信 跨文档消息传输 HTML5提供了在网页文档之间相互接收和发送信息的功能,使用这个功能,只要获取到网页所在窗口对象的实例,不仅同源(域+端口)的网页可以相互通信,甚至可以实现跨域通信.涉及 ...