c++(堆排序)
堆排序是另外一种常用的递归排序。因为堆排序有着优秀的排序性能,所以在软件设计中也经常使用。堆排序有着属于自己的特殊性质,和二叉平衡树基本是一致的。打一个比方说,处于大堆中的每一个数据都必须满足这样一个特性:
(1)每一个array[n] 不小于array[2*n]
(2)每一个array[n]不小于array[2 * n + 1]
构建这样一个堆只是基础,后面我们需要每次从堆的顶部拿掉一个数据,不断调整堆,直到这个数组变成有序数组为主。所以详细的堆排序算法应该是这样的:
1)构建大堆,使得堆中的每一个数据都满足上面提到的性质
2)将堆的第一个数据和堆的最后一个数据进行互换,然后重新调整堆,直到堆重新平衡为止
3)重复2)的过程,直到整个数组有序。
上面的描述过程很简单,那么实践操作是怎么样的呢?
a)对入参进行判断
void heap_sort(int array[], int length)
{
if(NULL == array || 0 == length)
return ; /* to make sure data starts at number 1 */
_heap_sort(array-1, length);
}
b)构建大堆和调整大堆
void _heap_sort(int array[], int length)
{
int index = 0;
int median = 0;
construct_big_heap(array, length); for(index = length; index > 1; index --)
{
median = array[1];
array[1] = array[index];
array[index] = median; reconstruct_heap(array, 1, index-1);
}
}
c)构建大堆的细节操作部分
void set_sorted_value(int array[], int length)
{
int index = length;
int median = 0;
if(length == 1) return; while(index > 1){
if(array[index >> 1] >= array[index])
break; median = array[index];
array[index] = array[index >> 1];
array[index >> 1] = median;
index >>= 1;
}
} void construct_big_heap(int array[], int length)
{
int index = 0 ; for(index = 1; index <= length; index ++)
{
set_sorted_value(array, index);
}
}
d)大堆迭代调整
void reconstruct_heap(int array[], int index, int length)
{
int swap = 0;
if(length < index << 1)
return; if(length == index << 1){
adjust_leaf_position(array, index);
return;
} if(-1 != (swap = adjust_normal_position(array, index))){
reconstruct_heap(array, swap, length);
}
}
e)对单分支节点和满分支节点分别处理
int adjust_normal_position(int array[], int index)
{
int left = index << 1 ;
int right = left + 1;
int median = 0;
int swap = 0; if(array[index] >= array[left]){
if(array[index] >= array[right]){
return -1;
}else{
swap = right;
}
}else{
if(array[index] >= array[right]){
swap = left;
}else{
swap = array[left] > array[right] ? left : right;
}
} if(swap == left) {
median = array[index];
array[index] = array[left];
array[left] = median;
}else{
median = array[index];
array[index] = array[right];
array[right] = median;
} return swap;
} STATUS adjust_leaf_position(int array[], int index)
{
int median = 0;
if(array[index] > array[index << 1])
return TRUE; median = array[index];
array[index] = array[index << 1];
array[index << 1] = median;
return FALSE;
}
f)堆排序算法介绍完毕,创建测试用例验证
static void test1()
{
int array[] = {1};
heap_sort(array, sizeof(array)/sizeof(int));
} static void test2()
{
int array[] = {2, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
} static void test3()
{
int array[] = {3, 2, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
assert(3 == array[2]);
} static void test4()
{
int array[] = {2, 3, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
assert(3 == array[2]);
} static void test5()
{
int array[] = {5,3, 4, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(3 == array[1]);
assert(4 == array[2]);
assert(5 == array[3]);
} static void test6()
{
int array[] = {2, 3,6, 8, 7};
heap_sort(array, sizeof(array)/sizeof(int));
assert(2 == array[0]);
assert(3 == array[1]);
assert(6 == array[2]);
assert(7 == array[3]);
assert(8 == array[4]);
} static void test7()
{
int array[] = {3,4,2,7,1,9,8,6,5};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
assert(3 == array[2]);
assert(4 == array[3]);
assert(5 == array[4]);
assert(6 == array[5]);
assert(7 == array[6]);
assert(8 == array[7]);
assert(9 == array[8]);
}
c++(堆排序)的更多相关文章
- 算法与数据结构(十四) 堆排序 (Swift 3.0版)
上篇博客主要讲了冒泡排序.插入排序.希尔排序以及选择排序.本篇博客就来讲一下堆排序(Heap Sort).看到堆排序这个名字我们就应该知道这种排序方式的特点,就是利用堆来讲我们的序列进行排序.&quo ...
- [数据结构]——堆(Heap)、堆排序和TopK
堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ...
- 堆排序与优先队列——算法导论(7)
1. 预备知识 (1) 基本概念 如图,(二叉)堆是一个数组,它可以被看成一个近似的完全二叉树.树中的每一个结点对应数组中的一个元素.除了最底层外,该树是完全充满的,而且从左向右填充.堆的数组 ...
- 数据结构:堆排序 (python版) 小顶堆实现从大到小排序 | 大顶堆实现从小到大排序
#!/usr/bin/env python # -*- coding:utf-8 -*- ''' Author: Minion-Xu 小堆序实现从大到小排序,大堆序实现从小到大排序 重点的地方:小堆序 ...
- 堆排序(python实现)
堆排序是利用最大最或最小堆,废话不多说: 先给出几个概念: 二叉树:二叉树是每个节点最多有两个子树的树结构.通常子树被称作“左子树”(left subtree)和“右子树” 完全二叉树:除最后一层外, ...
- 堆排序分析及php实现
堆排序:是一种特殊形式的选择排序,他是简单选择排序的一种改进. 什么是堆? 具有n个元素的序列:{k1,k2,ki,…,kn} (ki <= k2i,ki <= k2i+1) 或者 (ki ...
- 浅谈C++之冒泡排序、希尔排序、快速排序、插入排序、堆排序、基数排序性能对比分析之后续补充说明(有图有真相)
如果你觉得我的有些话有点唐突,你不理解可以想看看前一篇<C++之冒泡排序.希尔排序.快速排序.插入排序.堆排序.基数排序性能对比分析>. 这几天闲着没事就写了一篇<C++之冒泡排序. ...
- [Unity][Heap sort]用Unity动态演示堆排序的过程(How Heap Sort Works)
[Unity][Heap sort]用Unity动态演示堆排序的过程 How Heap Sort Works 最近做了一个用Unity3D动态演示堆排序过程的程序. I've made this ap ...
- PHP实现堆排序
经验 工作了,面试我工作这家公司时被技术面打击得不行,因为自己的数据结构等基础学得实在太差,虽然原来是想做设计师的说...不过看在PHP写得还凑合的份上能来实习了,但还是决心恶补一下基础. 其实自己之 ...
- 堆排序 Heapsort
Prime + Heap 简直神了 时间优化好多,顺便就把Heapsort给撸了一发 具体看图 Heapsort利用完全二叉树+大(小)顶锥的结构每次将锥定元素和锥最末尾的元素交换 同时大(小)顶锥元 ...
随机推荐
- 尝试在条件“$(_DeviceSdkVersion) >= 21”中对计算结果为“”而不是数字的“$(_DeviceSdkVersion)
晚上搞xamarin ,运行xamarin项目好好的,不知道怎么回事,一次运行xamarin android项目的时候,部署失败,以前也是遇到这样的错误. 尝试在条件"$(_DeviceSd ...
- 前端MVC Vue2学习总结(四)——条件渲染、列表渲染、事件处理器
一.条件渲染 1.1.v-if 在字符串模板中,如 Handlebars ,我们得像这样写一个条件块: <!-- Handlebars 模板 --> {{#if ok}} <h1&g ...
- bzoj 2119: 股市的预测
Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...
- iOS XIB等比例适配
选择两个视图使其等宽高,再去约束里面就可以设置乘数因子. 简单的一个例子: 要求:设置白色视图的宽度为蓝色视图的一半 1.点击白色视图连线到父视图,选择 Equal Widths 2.选择右边 ...
- 《重新定义公司 - Google 是如何运营的》重点摘录
赋能:创意时代的组织原则 未来企业的成功之道,是聚集一批聪明的创意精英,营造合适的氛围和支持环境,充分发挥他们的创造力,快速感知用户需求,愉快地创造响应的产品和服务.未来组织的最重要功能,那就是赋 ...
- jQuery模块化开发
//定义了命名空间. var Itcast = {}; //定义第二级别的 命名空间. var Itcast.Model = {}; var Itcast.Model.UIJs = (function ...
- jquery中attr和prop的区别分析
这篇文章主要介绍了jquery中attr和prop的区别分析的相关资料,需要的朋友可以参考下 在高版本的jquery引入prop方法后,什么时候该用prop?什么时候用attr?它们两个之间有什么区别 ...
- Tengine 安装配置全过程(nginx 同理)
1.安装必要的编译环境好 yum update yum install gcc gcc-c++ autoconf automake 2.安装需要的组件 A.PCRE PCRE(Perl Compati ...
- Python学习_07_错误、异常
地毯式地过语法终于快要结束了... Python中的常见异常 1.NameError:尝试访问一个未初始化的变量 2. ZeroDivisionError:除数为0 3. SyntaxError:Py ...
- ITS简要分析流程(using Qiime)
Qiime安装 参考资料:http://blog.sina.com.cn/s/blog_83f77c940101h2rp.html Qiime script官方说明http://qiime.org/s ...