题目描述:

ACX在××信竞组学会信息竞赛,但是他的同学都很巨,于是要他去买水,结果来到某个买水的商店(奇奇怪怪的商店)。

一天,ACX买了 N 个容量可以认为是无限大的瓶子,初始时每个瓶子里有 1 升水。

ACX发现瓶子实在太多了,于是他决定 保留不超过 K 个瓶子。每次他选择两个当前含水量相同的瓶子合并,把一个瓶子的水全部倒进另一个瓶,然后把空瓶丢弃(不能丢弃有水的瓶子)。

显然在某些情况下ACX无法达到目标,比如 N=3,K=1.此时ACX会重新买一些新的瓶子(新瓶子容量无限,开始时有 1 升水),以达到目标。现

在ACX想知道,最少需要买多少新瓶子才能达到目标呢?

读入格式:

一行 两个正整数 N,K(1<=N<=10^9 ,K<=1000)

输出格式:

一个非负整数,表示最少需要买多少新瓶子。

样例输入:

3 1

样例输出:

1

Solution:

将瓶子中水的体积转换成二进制,如1升可写成0000001,同理两升就是0000010。

题目合并的一定是相同的体积合并,所以容积一定是二的次方倍,这时候我们可以发现,二进制数上的1就可以是一个瓶子,这时候我们就可以将题目转换成加数(数就是多加了几瓶水),如样例:11 加一变成 100 就只有一个瓶子了。

所以题目就可以变成每次加x,使这个数二进制时位上的1的个数小于k

为了方便我们每次就加上最后一位上表示的二进制数如10010(2)时,就加10(2),使最后位置上的1进位从而减少1的个数。

这个题目需要感性理解下吧,理解代码了还是不难的。就是一道套路题~

Code:

 //It is coded by Ning_Mew on 11.1 :)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
using namespace std;
int n,k;
int need=;
int a[+];
int num(int s){
int numb=;
while(s){numb++;s=s-(s&(-s));}
return numb;
}
int main(){
freopen("water.in","r",stdin);
freopen("water.out","w",stdout);
scanf("%d%d",&n,&k);
while(num(n)>k){
need+=(n&(-n));
n+=(n&(-n));
}
printf("%d\n",need);
return ;
}

【题解】 Test 买水的ACX(套路)的更多相关文章

  1. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  2. SDOI2017 Round1 简要题解

    我们 TM 怎么又要上文化课..我 哔哔哔哔哔哔 「SDOI2017」数字表格 题意 有 \(T\) 组数据,求 \[ \prod_{i = 1}^{n} \prod_{j = 1}^{m} fib[ ...

  3. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  4. 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)

    [UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...

  5. [luogu3600]随机数生成器

    题面在这里 题意 给定n个[1-x]的随机整数\(a_1,a_2,a_3,...,a_n\)和q个询问区间\((l_i,r_i)\), 求出\(\max_{i=1}^{q}({\min_{j=l_i} ...

  6. 【BZOJ3669】【Noi2014】魔法森林(Link-Cut Tree)

    [BZOJ3669][Noi2014]魔法森林(Link-Cut Tree) 题面 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n ...

  7. ●BZOJ 4407 于神之怒加强版

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...

  8. CodeForces666E Forensic Examination

    题目描述 给你一个串S以及一个字符串数组T[1..m],q次询问,每次问S的子串S[pl​..pr​]在T[l..r]中的哪个串里的出现次数最多,并输出出现次数. 如有多解输出最靠前的那一个. 题解 ...

  9. AtCoder 瞎做

    目录 ARC 058 E - 和風いろはちゃん / Iroha and Haiku 题意 题解 技巧 代码 ARC 059 F - バイナリハック / Unhappy Hacking 题意 题解 技巧 ...

随机推荐

  1. [Usaco2012 Dec]First! BZOJ3012

    分析: 其实我们可以很容易的想到,如果一个串是另一个串的子串,那么必定长的那个串不可能是字典序最小的串.其次,如果一个串为了使他成为字典序最小的串儿出现了矛盾的情况,那么也不可能是字典序最小的串.那么 ...

  2. SqlServer执行大的数据库脚本出错解决方法

    如果执行线上项目拷下来sqlserver的.sql的数据库脚本文件,如果文件较大时,那么就会报错内存不足之类的. 这时可以在命令提示符使用命令来执行脚本文件.切记,执行前先改一下数据库存放位置! 命令 ...

  3. 20155306 白皎 《网络攻防》 EXP7 网络欺诈技术防范

    20155306 白皎 <网络攻防> EXP7 网络欺诈技术防范 问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 局域网内的攻击以及连接公众场所的共享wifi (2)在日常 ...

  4. 20155334 《网络攻防》 Exp7 网络欺诈防范

    20155334 <网络攻防> Exp7 网络欺诈防范 一.基础问题回答 通常在什么场景下容易受到DNS spoof攻击 同一局域网下,以及各种公共网络. 在日常生活工作中如何防范以上两攻 ...

  5. NetWork——描述一次完整的网络请求过程

    台根DNS,根DNS服务器收到请求后会返回负责这个域名(.net)的服务器的一个IP,本地DNS服务器使用该IP信息联系负责.net域的这台服务器.这台负责.net域的服务器收到请求后,如果自己无法解 ...

  6. [Oracle]OpenVMS 运行 Oracle 时的推荐值

    PQL Parameters            ORACLE Account  ------------------        -------------------------  PQL_M ...

  7. mfc 嵌套类

    嵌套类 一. 嵌套类 嵌套类的定义 将某个类的定义放在另一个类的内部,这样的类定义,叫嵌套类. class AAA { int aaa; class BBB { int bbb; //其它成员或者函数 ...

  8. python中eval函数作用

    eval函数就是实现list.dict.tuple与str之间的转化str函数把list,dict,tuple转为为字符串 一.字符串转换成列表 a = "[[1,2], [3,4], [5 ...

  9. JavaScript快速入门-简介

    一.JavaScript历史(摘自w3school) JavaScript 是因特网上最流行的脚本语言,它存在于全世界所有 Web 浏览器中,能够增强用户与 Web 站点和 Web 应用程序之间的交互 ...

  10. Salesforce Apex学习 : 利用Schema命名空间中的DescribeSObjectResult类型来获取sObject对象的基本信息

    DescribeSObjectResult 对象的取得: //使用getDescribe方法和sObject token Schema.DescribeSObjectResult mySObjDesc ...