机器学习入门-文本特征-使用LDA主题模型构造标签 1.LatentDirichletAllocation(LDA用于构建主题模型) 2.LDA.components(输出各个词向量的权重值)
函数说明
1.LDA(n_topics, max_iters, random_state) 用于构建LDA主题模型,将文本分成不同的主题
参数说明:n_topics 表示分为多少个主题, max_iters表示最大的迭代次数, random_state 表示随机种子
2. LDA.components_ 打印输入特征的权重参数,
LDA主题模型:可以用于做分类,好比如果是两个主题的话,那就相当于是分成了两类,同时我们也可以找出根据主题词的权重值,来找出一些主题的关键词
使用sklearn导入库
from sklearn.decomposition import LatentDirichletAllocation, 使用方法还是fit_transform
LDA.components_ 打印出各个参数的权重值,这个权重值是根据数据特征的标签来进行排列的
代码:
第一步:Dataframe化数据
第二步:进行分词和停用词的去除,使用' '.join 为了词袋模型做准备
第三步:使用np.vectorizer对函数进行向量化处理,调用定义的函数进行分词和停用词的去除
第四步:使用Tf-idf 函数构建词袋模型
第五步:使用LatentDirichletAllocation构建LDA模型,并进行0,1标签的数字映射
第六步:使用LDA.components_打印输入特征标签的权重得分,去除得分小于0.6的得分,我们可以看出哪些词是主要的关键字
import pandas as pd
import numpy as np
import re
import nltk #pip install nltk corpus = ['The sky is blue and beautiful.',
'Love this blue and beautiful sky!',
'The quick brown fox jumps over the lazy dog.',
'The brown fox is quick and the blue dog is lazy!',
'The sky is very blue and the sky is very beautiful today',
'The dog is lazy but the brown fox is quick!'
] labels = ['weather', 'weather', 'animals', 'animals', 'weather', 'animals'] # 第一步:构建DataFrame格式数据
corpus = np.array(corpus)
corpus_df = pd.DataFrame({'Document': corpus, 'categoray': labels}) # 第二步:构建函数进行分词和停用词的去除
# 载入英文的停用词表
stopwords = nltk.corpus.stopwords.words('english')
# 建立词分割模型
cut_model = nltk.WordPunctTokenizer()
# 定义分词和停用词去除的函数
def Normalize_corpus(doc):
# 去除字符串中结尾的标点符号
doc = re.sub(r'[^a-zA-Z0-9\s]', '', string=doc)
# 是字符串变小写格式
doc = doc.lower()
# 去除字符串两边的空格
doc = doc.strip()
# 进行分词操作
tokens = cut_model.tokenize(doc)
# 使用停止用词表去除停用词
doc = [token for token in tokens if token not in stopwords]
# 将去除停用词后的字符串使用' '连接,为了接下来的词袋模型做准备
doc = ' '.join(doc) return doc # 第三步:向量化函数和调用函数
# 向量化函数,当输入一个列表时,列表里的数将被一个一个输入,最后返回也是一个个列表的输出
Normalize_corpus = np.vectorize(Normalize_corpus)
# 调用函数进行分词和去除停用词
corpus_norm = Normalize_corpus(corpus) # 第四步:使用TfidVectorizer进行TF-idf词袋模型的构建
from sklearn.feature_extraction.text import TfidfVectorizer Tf = TfidfVectorizer(use_idf=True)
Tf.fit(corpus_norm)
vocs = Tf.get_feature_names()
corpus_array = Tf.transform(corpus_norm).toarray()
corpus_norm_df = pd.DataFrame(corpus_array, columns=vocs)
print(corpus_norm_df.head()) # 第五步:构建LDA主题模型
from sklearn.decomposition import LatentDirichletAllocation LDA = LatentDirichletAllocation(n_topics=2, max_iter=100, random_state=42)
LDA_corpus = np.array(LDA.fit_transform(corpus_array))
LDA_corpus_one = np.zeros([LDA_corpus.shape[0]])
LDA_corpus_one[LDA_corpus[:, 0] < LDA_corpus[:, 1]] = 1
corpus_norm_df['LDA_labels'] = LDA_corpus_one
print(corpus_norm_df.head())

# 第六步:打印每个单词的主题的权重值
tt_matrix = LDA.components_
for tt_m in tt_matrix:
tt_dict = [(name, tt) for name, tt in zip(vocs, tt_m)]
tt_dict = sorted(tt_dict, key=lambda x: x[1], reverse=True)
# 打印权重值大于0.6的主题词
tt_dict = [tt_threshold for tt_threshold in tt_dict if tt_threshold[1] > 0.6]
print(tt_dict)

大于0.6权重得分的部分特征
机器学习入门-文本特征-使用LDA主题模型构造标签 1.LatentDirichletAllocation(LDA用于构建主题模型) 2.LDA.components(输出各个词向量的权重值)的更多相关文章
- 机器学习入门-文本特征-word2vec词向量模型 1.word2vec(进行word2vec映射编码)2.model.wv['sky']输出这个词的向量映射 3.model.wv.index2vec(输出经过映射的词名称)
函数说明: 1. from gensim.model import word2vec 构建模型 word2vec(corpus_token, size=feature_size, min_count ...
- 机器学习入门-文本数据-构造Ngram词袋模型 1.CountVectorizer(ngram_range) 构建Ngram词袋模型
函数说明: 1 CountVectorizer(ngram_range=(2, 2)) 进行字符串的前后组合,构造出新的词袋标签 参数说明:ngram_range=(2, 2) 表示选用2个词进行前后 ...
- 机器学习入门-数值特征-数字映射和one-hot编码 1.LabelEncoder(进行数据自编码) 2.map(进行字典的数字编码映射) 3.OnehotEncoder(进行one-hot编码) 4.pd.get_dummies(直接对特征进行one-hot编码)
1.LabelEncoder() # 用于构建数字编码 2 .map(dict_map) 根据dict_map字典进行数字编码的映射 3.OnehotEncoder() # 进行one-hot编码 ...
- 机器学习入门09 - 特征组合 (Feature Crosses)
原文链接:https://developers.google.com/machine-learning/crash-course/feature-crosses/ 特征组合是指两个或多个特征相乘形成的 ...
- 机器学习入门-文本数据-构造词频词袋模型 1.re.sub(进行字符串的替换) 2.nltk.corpus.stopwords.words(获得停用词表) 3.nltk.WordPunctTokenizer(对字符串进行分词操作) 4.np.vectorize(对函数进行向量化) 5. CountVectorizer(构建词频的词袋模型)
函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string) 用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0- ...
- 机器学习入门-文本数据-构造Tf-idf词袋模型(词频和逆文档频率) 1.TfidfVectorizer(构造tf-idf词袋模型)
TF-idf模型:TF表示的是词频:即这个词在一篇文档中出现的频率 idf表示的是逆文档频率, 即log(文档的个数/1+出现该词的文档个数) 可以看出出现该词的文档个数越小,表示这个词越稀有,在这 ...
- 机器学习入门-数值特征-对数据进行log变化
对于一些标签和特征来说,分布不一定符合正态分布,而在实际的运算过程中则需要数据能够符合正态分布 因此我们需要对特征进行log变化,使得数据在一定程度上可以符合正态分布 进行log变化,就是对数据使用n ...
- 机器学习入门-数值特征-数据四分位特征 1.quantile(用于求给定分数位的数值) 2.plt.axvline(用于画出竖线) 3.pd.pcut(对特征进行分位数切分,生成新的特征)
函数说明: 1. .quantile(cut_list) 对DataFrame类型直接使用,用于求出给定列表中分数的数值,这里用来求出4分位出的数值 2. plt.axvline() # 用于画 ...
- 机器学习入门-数值特征-连续数据离散化(进行分段标记处理) 1.hist(Dataframe格式直接画直方图)
函数说明: 1. .hist 对于Dataframe格式的数据,我们可以使用.hist直接画出直方图 对于一些像年龄和工资一样的连续数据,我们可以对其进行分段标记处理,使得这些连续的数据变成离散化 就 ...
随机推荐
- Java学习——this、this()、super 和 super()的使用
编写程序:说明 this.super 和 super()的用法.程序首先定义 Point(点)类,然后创建点的子类 Line(线)),最后通过 LX7_3 类输出线段的长度. package Pack ...
- 初识MapReduce
MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难 ...
- sqlserver 模糊查询,连表,聚合函数,分组
use StudentManageDB go select StudentName,StudentAddress from Students where StudentAddress like '天津 ...
- sqlserver数据库设计完整性与约束
use StudentManageDB go --创建主键约束 if exists(select * from sysobjects where name='pk_StudentId') alter ...
- Type Cannot change version of project facet Dynamic Web Module to 2.5 报错
项目下的.setings文件 夹中的 version 改为2.5
- Java基础知识_毕向东_Java基础视频教程笔记(14-18集合框架)
14天-01-集合框架集合类出现:面向对象语言对事物的体现都是以对象的形式,所以为了方便对多个对象的操作,就对对象进行存储,集合就是存储对象最常用的一种方式.数组与集合类同是容器,有何不同? 数组长度 ...
- MFC+mongodb+nodejs 数据库的读取与写入操作
首先通过nodejs和mongodb建立后端服务器 一.在windows平台下启动mongodb服务器 1.进入mongodb的安装目录,并进去bin目录启动mongod 2.在d盘建立mongodb ...
- C# webbrowser全掌握(二)
全篇引用单元mshtml; 路径:C:\windows\assembly\GAC\Microsoft.mshtml\7.0.3300.0__b03f5f7f11d50a3a\Microsoft.msh ...
- 网络基础和python(二)
一,五层协议 应用层 端口 传输层 tcp\udp 网络层 ipv4\6 数据链路层 ethernet 物理层 mac 二:什么是变量? 变量:核心在于变和量儿字,变->变 ...
- CS229 6.3 Neurons Networks Gradient Checking
BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得 ...