[arc102E]Stop. Otherwise...[容斥+二项式定理]
题意
给你 \(n\) 个完全相同骰子,每个骰子有 \(k\) 个面,分别标有 \(1\) 到 \(k\) 的所有整数。对于\([2,2k]\) 中的每一个数 \(x\) 求出有多少种方案满足任意两个骰子的和都不为 \(x\) 的方案数。
分析
- 对于每个 \(x\) ,考虑当 \(i\le x\) 时, \(i\) 和 \(x-i\) 只能出现一个。将他们看成同一种权值,数量记为 \(w\) ,剩余权值数量记位 \(cnt\) ,然后枚举有多少种特殊权值没出现 (\(ans\)) 并容斥:
\]
这样可以 \(O(n^3)\) 求解。
考虑枚举 \(ans\) 的过程中和 \(j\) 这一项有关的内容:
\[\begin{aligned}val_j&=\sum_\limits{i=0}^j(-1)^{j-i}\binom{n+cnt-j-1}{cnt-j-1}\binom{w}{j}\binom{j}{i}2^{w-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^w\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{j-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}(2-1)^j\end{aligned}
\]可以 \(O(1)\) 求一个 \(val\) ,于是复杂度优化到了 \(O(n^2)\)
注意当 \(x\) 为偶数时候单独讨论 \(\frac{x}{2}\) 这个权值。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 4007, mod = 998244353;
int n, K, ans;
int fac[N], invfac[N], inv[N], bin[N], suf0[N], suf1[N];
int C(int n, int m) {
if(n < m) return 0;
return 1ll * fac[n] * invfac[m] % mod * invfac[n - m] % mod;
}
void add(int &a, int b) {
a += b;if(a >= mod) a -= mod;
}
void solve(int n, int cnt, int w) {
for(int i = 0; i <= w; ++i)
add(ans, 1ll * (i & 1 ? mod - 1: 1) * C(n + cnt - i - 1, cnt - i - 1) % mod * C(w, i)% mod * bin[w - i] % mod);
}
int main() {
K = gi(), n = gi();
inv[1] = fac[0] = invfac[0] = 1, bin[0] = 1;
rep(i, 1, 4000) {
if(i ^ 1) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
fac[i] = 1ll * fac[i - 1] * i % mod;
invfac[i] = 1ll * invfac[i - 1] * inv[i] % mod;
bin[i] = 1ll * bin[i - 1] * 2 % mod;
}
rep(k, 2, 2 * K) {
ans = 0;
int w = min(k / 2, K - (k - 1) / 2), cnt = K - w;
if(k % 2 == 0 && K >= k / 2) {
solve(n, cnt, w - 1);
solve(n - 1, cnt, w - 1);
}
else solve(n, cnt, w);
printf("%d\n", ans);
}
return 0;
}
[arc102E]Stop. Otherwise...[容斥+二项式定理]的更多相关文章
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- Codeforces.997C.Sky Full of Stars(容斥 计数)
题目链接 那场完整的Div2(Div1 ABC)在这儿.. \(Description\) 给定\(n(n\leq 10^6)\),用三种颜色染有\(n\times n\)个格子的矩形,求至少有一行或 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划+广义容斥)
点此看题面 大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量.将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数. 什么是广义容斥(二项式反演) ...
- 【BZOJ4487】[JSOI2015] 染色问题(高维容斥)
点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题 ...
- LOJ3120. 「CTS2019」珍珠 [容斥,生成函数]
传送门 思路 非常显然,就是要统计有多少种方式使得奇数的个数不超过\(n-2m\).(考场上这个都没想到真是身败名裂了--) 考虑直接减去钦点\(n-2m+1\)个奇数之后的方案数,但显然这样会算重, ...
- Min-Max 容斥的证明
这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1} ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- [Codeforces 1228E]Another Filling the Grid(组合数+容斥)
题目链接 解题思路: 容斥一下好久可以得到式子 \(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni ...
- luogu P4515 [COCI2009-2010#6] XOR 容斥
LINK:XOR 一个不常见的容斥套路题. 以往是只求三角形面积的交 现在需要求被奇数次覆盖的区域的面积. 打住 求三角形面积的交我也不会写 不过这道题的三角形非常特殊 等腰直角 且直角点都在左下方 ...
随机推荐
- Asp.Net Core使用System.Drawing.Common部署到docker报错问题
Asp.Net Core 2.1发布后,正式支持System.Drawing.Common绘图了,可以用来做一些图片验证码之类的功能.但是把网站部署到docker容器里运行会遇到很多问题,也是非常闹心 ...
- LeetCode题解之 Convert Sorted Array to Binary Search Tree
1.题目描述 2.问题分析 使用二分法即可. 3.代码 TreeNode* sortedArrayToBST(vector<int>& nums) { ) return NULL; ...
- python终端总是无法删除字符
yum install readline-devel
- Percona Xtradb Cluster的设计与实现
Percona Xtradb Cluster的设计与实现 Percona Xtradb Cluster的实现是在原mysql代码上通过Galera包将不同的mysql实例连接起来,实现了multi ...
- 使用 PowerShell 将数据磁盘附加到 Windows VM
本文介绍如何使用 PowerShell 将新磁盘和现有磁盘附加到 Windows 虚拟机. 在开始之前,请查看以下提示: 虚拟机的大小决定了可以附加多少个磁盘. 有关详细信息,请参阅虚拟机大小. 若要 ...
- SQL Server 2014内存优化表的使用场景(转载)
最近一个朋友找到走起君,咨询走起君内存优化表如何做高可用的问题 大家知道,内存优化表作为In-Memory OLTP功能是从SQL Server 2014开始引入,用来对抗Oracle 12C的In- ...
- 实战分析: MySQL字符集
原创: 吴炳锡 MySQLBeginner 实战分析: MySQL字符集说明 在本文中讨论以下几个问题: 1. GBK和UTF8占用几个字节 2. ASCII码在不同字符集中占用几个字节 3. MyS ...
- UNIX高级环境编程(12)进程关联(Process Relationships)- 终端登录过程 ,进程组,Session
在前面的章节我们了解到,进程之间是有关联的: 每个进程都有一个父进程: 子进程退出时,父进程可以感知并且获取子进程的退出状态. 本章我们将了解: 进程组的更多细节: sessions的内容: logi ...
- touch创建文件
创建文件 在cs目录下创建1.txt和2.txt文件 touch ./文件名.txt 或者 touch /root/cs 文件名.txt 或者 echo > ./文件名.txt 或者 >. ...
- python Anaconda
转载自 https://blog.csdn.net/program_developer/article/details/79677557 目录: Anaconda是什么? 如何安装? 如何管理包? ...