[arc102E]Stop. Otherwise...[容斥+二项式定理]
题意
给你 \(n\) 个完全相同骰子,每个骰子有 \(k\) 个面,分别标有 \(1\) 到 \(k\) 的所有整数。对于\([2,2k]\) 中的每一个数 \(x\) 求出有多少种方案满足任意两个骰子的和都不为 \(x\) 的方案数。
分析
- 对于每个 \(x\) ,考虑当 \(i\le x\) 时, \(i\) 和 \(x-i\) 只能出现一个。将他们看成同一种权值,数量记为 \(w\) ,剩余权值数量记位 \(cnt\) ,然后枚举有多少种特殊权值没出现 (\(ans\)) 并容斥:
\]
这样可以 \(O(n^3)\) 求解。
考虑枚举 \(ans\) 的过程中和 \(j\) 这一项有关的内容:
\[\begin{aligned}val_j&=\sum_\limits{i=0}^j(-1)^{j-i}\binom{n+cnt-j-1}{cnt-j-1}\binom{w}{j}\binom{j}{i}2^{w-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^w\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{j-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}(2-1)^j\end{aligned}
\]可以 \(O(1)\) 求一个 \(val\) ,于是复杂度优化到了 \(O(n^2)\)
注意当 \(x\) 为偶数时候单独讨论 \(\frac{x}{2}\) 这个权值。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 4007, mod = 998244353;
int n, K, ans;
int fac[N], invfac[N], inv[N], bin[N], suf0[N], suf1[N];
int C(int n, int m) {
if(n < m) return 0;
return 1ll * fac[n] * invfac[m] % mod * invfac[n - m] % mod;
}
void add(int &a, int b) {
a += b;if(a >= mod) a -= mod;
}
void solve(int n, int cnt, int w) {
for(int i = 0; i <= w; ++i)
add(ans, 1ll * (i & 1 ? mod - 1: 1) * C(n + cnt - i - 1, cnt - i - 1) % mod * C(w, i)% mod * bin[w - i] % mod);
}
int main() {
K = gi(), n = gi();
inv[1] = fac[0] = invfac[0] = 1, bin[0] = 1;
rep(i, 1, 4000) {
if(i ^ 1) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
fac[i] = 1ll * fac[i - 1] * i % mod;
invfac[i] = 1ll * invfac[i - 1] * inv[i] % mod;
bin[i] = 1ll * bin[i - 1] * 2 % mod;
}
rep(k, 2, 2 * K) {
ans = 0;
int w = min(k / 2, K - (k - 1) / 2), cnt = K - w;
if(k % 2 == 0 && K >= k / 2) {
solve(n, cnt, w - 1);
solve(n - 1, cnt, w - 1);
}
else solve(n, cnt, w);
printf("%d\n", ans);
}
return 0;
}
[arc102E]Stop. Otherwise...[容斥+二项式定理]的更多相关文章
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- Codeforces.997C.Sky Full of Stars(容斥 计数)
题目链接 那场完整的Div2(Div1 ABC)在这儿.. \(Description\) 给定\(n(n\leq 10^6)\),用三种颜色染有\(n\times n\)个格子的矩形,求至少有一行或 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划+广义容斥)
点此看题面 大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量.将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数. 什么是广义容斥(二项式反演) ...
- 【BZOJ4487】[JSOI2015] 染色问题(高维容斥)
点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题 ...
- LOJ3120. 「CTS2019」珍珠 [容斥,生成函数]
传送门 思路 非常显然,就是要统计有多少种方式使得奇数的个数不超过\(n-2m\).(考场上这个都没想到真是身败名裂了--) 考虑直接减去钦点\(n-2m+1\)个奇数之后的方案数,但显然这样会算重, ...
- Min-Max 容斥的证明
这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1} ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- [Codeforces 1228E]Another Filling the Grid(组合数+容斥)
题目链接 解题思路: 容斥一下好久可以得到式子 \(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni ...
- luogu P4515 [COCI2009-2010#6] XOR 容斥
LINK:XOR 一个不常见的容斥套路题. 以往是只求三角形面积的交 现在需要求被奇数次覆盖的区域的面积. 打住 求三角形面积的交我也不会写 不过这道题的三角形非常特殊 等腰直角 且直角点都在左下方 ...
随机推荐
- EntityFramework Code-First 简易教程(一)
前言:学习了EF框架这么久,还没有好好总结一番,正好遇到一国外的网站,发现不错,随即翻译过来,一是让自己复习一遍,二是供广大初学者学习,翻译过程中加入了一些自己的理解,如有错误,还请指出,多谢多谢.好 ...
- 【转】Java学习---垃圾回收算法与 JVM 垃圾回收器综述
[原文]https://www.toutiao.com/i6593931841462338062/ 垃圾回收算法与 JVM 垃圾回收器综述 我们常说的垃圾回收算法可以分为两部分:对象的查找算法与真正的 ...
- fedora27安装后的配置工作(持续更新)
换源 没什么可说的,安装后更换国内软件源是必须做的事,推荐更换阿里的镜像源.换源教程 添加epel源 EPEL (Extra Packages for Enterprise Linux)是基于Fedo ...
- Tidb数据库导入数据出现oom问题
今天使用insert操作向tidb中插入数据,发现正在导入的过程中出现如下错误: mysql: [Warning] Using a password on the command line inter ...
- Symbol Tables
符号表 符号表是键值对的集合,支持给定键查找值的操作,有很多应用: API put() 和 get() 是最基础的两个操作,为了保证代码的一致性,简洁性和实用性,先说下具体实现中的几个设计选择. 泛型 ...
- Android权限申请完全解析(一):Android自带的权限申请
1.为什么要权限申请 6.0以上就需要了,别问为什么.(不是重点,自行搜索) 2.如何进行权限申请 Android自带的权限申请 EasyPermission权限申请 Ps:EasyPermissio ...
- [转][solr] - 索引数据删除
删除solr索引数据,使用XML有两种写法: 1) <delete><id>1</id></delete> <commit/> 2) < ...
- AnyHashable类型擦除的原因:set和dictory需要指定一个确定的类型
AnyHashable 属于无关联类型的擦除. 将具体类型的类型信息擦除掉了,只剩下协议类型的信息暴露出来. 类型擦除实践:将相同协议的不同实现屏蔽起来,暴露出类型的共同特征(协议接口). A typ ...
- php的匿名函数和闭包函数
php的匿名函数和闭包函数 tags: 匿名函数 闭包函数 php闭包函数 php匿名函数 function use 引言:匿名函数和闭包函数都不是特别高深的知识,但是很多刚入门的朋友却总是很困惑,因 ...
- Stay true to yourself
https://zhuanlan.zhihu.com/p/22928614 艾伦·德詹尼斯,1958年1月26日出生于美国路易斯安纳州梅泰里,美国主持人.演员.凭借出众的诙谐幽默的口才和喜剧天赋,活跃 ...