在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。

  我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)。提到KKT条件一般会附带的提一下拉格朗日乘子。对学过高等数学的人来说比较拉格朗日乘子应该会有些印象。二者均是求解最优化问题的方法,不同之处在于应用的情形不同。

一般情况下,最优化问题会碰到一下三种情况:

(1)无约束条件

  这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。

(2)等式约束条件

设目标函数为f(x),约束条件为h_k(x),形如:

  s.t. 表示subject to ,“受限于”的意思,l表示有l个约束条件。

        

   则解决方法是消元法或者拉格朗日法。消元法比较简单不在赘述,这里主要讲拉格朗日法,因为后面提到的KKT条件是对拉格朗日乘子法的一种泛化。

   例如给定椭球:

          

    求这个椭球的内接长方体的最大体积。这个问题实际上就是条件极值问题,即在条件      下,求的最大值。

    当然这个问题实际可以先根据条件消去 z (消元法),然后带入转化为无条件极值问题来处理。但是有时候这样做很困难,甚至是做不到的,这时候就需要用拉格朗日乘数法了。

    首先定义拉格朗日函数F(x):

          ( 其中λk是各个约束条件的待定系数。)

然后解变量的偏导方程:

    ......,

   如果有l个约束条件,就应该有l+1个方程。求出的方程组的解就可能是最优化值(高等数学中提到的极值),将结果带回原方程验证就可得到解。

   回到上面的题目,通过拉格朗日乘数法将问题转化为

         

   对求偏导得到

     

   联立前面三个方程得到,带入第四个方程解之

          

   带入解得最大体积为:

    

   至于为什么这么做可以求解最优化?维基百科上给出了一个比较好的直观解释。

 举个二维最优化的例子:

     min f(x,y)

      s.t. g(x,y) = c

  这里画出z=f(x,y)的等高线(函数登高线定义见百度百科):

                    

绿线标出的是约束g(x,y)=c的点的轨迹。蓝线是f(x,y)的等高线。箭头表示斜率,和等高线的法线平行。从梯度的方向上来看,显然有d1>d2。绿色的线是约束,也就是说,只要正好落在这条绿线上的点才可能是满足要求的点。如果没有这条约束,f(x,y)的最小值应该会落在最小那圈等高线内部的某一点上。而现在加上了约束,最小值点应该在哪里呢?显然应该是在f(x,y)的等高线正好和约束线相切的位置,因为如果只是相交意味着肯定还存在其它的等高线在该条等高线的内部或者外部,使得新的等高线与目标函数的交点的值更大或者更小,只有到等高线与目标函数的曲线相切的时候,可能取得最优值。

  如果我们对约束也求梯度∇g(x,y),则其梯度如图中绿色箭头所示。很容易看出来,要想让目标函数f(x,y)的等高线和约束相切,则他们切点的梯度一定在一条直线上(f和g的斜率平行)。

  也即在最优化解的时候:∇f(x,y)=λ(∇g(x,y)-C)    (其中∇为梯度算子; 即:f(x)的梯度 = λ* g(x)的梯度,λ是常数,可以是任何非0实数,表示左右两边同向。)

  那么拉格朗日函数: F(x,y)=f(x,y)+λ(g(x,y)−c) 在达到极值时与f(x,y)相等,因为F(x,y)达到极值时g(x,y)−c总等于零。

  min( F(x,λ) )取得极小值时其导数为0,即▽f(x)+▽∑ni=λihi(x)=0,也就是说f(x)和h(x)的梯度共线。

  简单的说,在F(x,λ)取得最优化解的时候,即F(x,λ)取极值(导数为0,▽[f(x,y)+λ(g(x,y)−c)]=0)的时候,f(x)与g(x) 梯度共线,此时就是在条件约束g(x)下,f(x)的最优化解。

(3)不等式约束条件

设目标函数f(x),不等式约束为g(x),有的教程还会添加上等式约束条件h(x)。此时的约束优化问题描述如下:

        

则我们定义不等式约束下的拉格朗日函数L,则L表达式为:

        

其中f(x)是原目标函数,hj(x)是第j个等式约束条件,λj是对应的约束系数,gk是不等式约束,uk是对应的约束系数。

  常用的方法是KKT条件,同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子L(a, b, x)= f(x) + a*g(x)+b*h(x),

  KKT条件是说最优值必须满足以下条件:

    1)L(a, b, x)对x求导为零;

    2)h(x) =0;

    3)a*g(x) = 0;

  求取这些等式之后就能得到候选最优值。其中第三个式子非常有趣,因为g(x)<=0,如果要满足这个等式,必须a=0或者g(x)=0. 这是SVM的很多重要性质的来源,如支持向量的概念。

  接下来主要介绍KKT条件,推导及应用。详细推导过程如下:

参考:

  【1】拉格朗日乘数法

  【2】KKT条件介绍

  【3】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

  【4】拉格朗日乘子法和KKT条件

【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件的更多相关文章

  1. 拉格朗日乘子法(Lagrange multiplier)和KKT条件

    拉格朗日乘子法: KKT条件:

  2. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  3. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  4. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  6. 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)

    SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...

  7. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...

  8. 拉格朗日乘子法 Lagrange multipliers

  9. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

随机推荐

  1. https://zeroc.com/index.html

    https://zeroc.com/index.html http://blog.shutupandcode.net/?p=1085

  2. Sublime Text3中Autoprefixer失效解决方法

    进入CSS文件,默认配置在按下快捷键(Ctrl+Shift+P)后输入Autoprefix,你会发觉它什么事也没干,然后--这什么鬼?抓狂ing-- 原来是因为这玩意还要配置下,以下为配置方法: Pr ...

  3. C#夯实基础系列之const与readonly

    一.const与readonly的争议       你一定写过const,也一定用过readonly,但说起两者的区别,并说出何时用const,何时用readonly,你是否能清晰有条理地说出个一二三 ...

  4. 【MySQL】Create table 以及 foreign key 删表顺序考究。

    1.以下是直接从数据库导出的建表语句. 1 -- ---------------------------- 2 -- Table structure for files 3 -- ---------- ...

  5. [转]hql 语法与详细解释

    HQL查询:Criteria查询对查询条件进行了面向对象封装,符合编程人员的思维方式,不过HQL(Hibernate Query Lanaguage)查询提供了更加丰富的和灵活的查询特性,因此 Hib ...

  6. Python多进程(2)——mmap模块与mmap对象

    本文介绍Python mmap模块与mmap对象的用法. mmap 模块提供“内存映射的文件对象”,mmap 对象可以用在使用 plain string 的地方,mmap 对象和 plain stri ...

  7. iOS整体框架类图

    Cocoa是OS X和iOS操作系统的程序的运行环境. iOS的操作系统层次结构分为四层:触摸UI层,媒体层,核心服务层,核心OS层.其中底层框架提供iOS的基本服务和技术,高层次框架简历在低层次框架 ...

  8. UIImage加载本地图片的两种方式

    UIImage加载图片方式一般有两种: (1)imagedNamed初始化:默认加载图片成功后会内存中缓存图片,这个方法用一个指定的名字在系统缓存中查找并返回一个图片对象.如果缓存中没有找到相应的图片 ...

  9. [jquery]折叠指定条件的表格

    最近在做财务报表时候,一些表格要做特定折叠效果 这里通过2个自定义属性来对表格之间的属性作关联 date-head和date-num,输出表格时候,可以按照这2个自定义属性给某些带父子层级关系的内容指 ...

  10. PHP语句【变量、运算符表达式、语句】

    一.变量的方法.1.empty可以用empty的方法能够判断变量的值是不是为空.①如果我们看一下某一个变量是不是已经存在过了假如我们输出一下 var_dump (empty($a)); 返回值为tru ...