●BZOJ 3640 JC的小苹果
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3640
题解:
期望dp,高斯消元
设dp[i][h]在i位置且血量为h这个状态的期望经过次数。
因为每当到达n点就停止游戏,所以到达终点的概率就是dp[n][1]+dp[n][2]+...+dp[n][hp]
可以按血量把dp分成若干个层次,我们希望这样分层次后就可以把问题转变为DAG上的dp,
可是存在伤害值为0的点,所以我们对于每一层列出来的n的dp计算式,是可能存在环的。
所以要用高斯消元。复杂度(hp*N^3)
注意到在每个层次做高斯消元时,其实这些方程的系数都相同,
(规定一下方程的形式:a1*x1+a2*x2+a3*x3+...+an*xn=c,a都为系数,x为n个未知数,c为常数项)
所以我们可以预处理记录下高斯消元是怎么消的,或者说,
因为每个未知数一定是由n个常数项线性组合起来的,所以我们记录一下每个未知数是如何由n个方程的常数项构成的
具体做法是把n个常数项看成一个1×n的X矩阵,然后把每个未知数xi分别也看成1×n的一个矩阵Yi
然后如果知道了常数项的矩阵,就可以由Yi*X的倒置矩阵得到一个1×1的矩阵,而里面存的值就是xi的值。
所以高斯消元就是去求出这n个Yi矩阵。
复杂度:O(hp*n^2+n^3)
更详细的膜这里:https://blog.sengxian.com/solutions/bzoj-3640
代码:
#include<bits/stdc++.h>
#define MAXN 160
using namespace std;
const double eps=1e-12;
double ANS,a[MAXN][MAXN],*A[MAXN],dp[MAXN][10005];
int damage[MAXN],cnt[MAXN];
int N,M,HP;
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x>0?1:-1;
}
struct Edge{
int ent;
int to[MAXN*MAXN],nxt[MAXN*MAXN],head[MAXN];
Edge():ent(2){}
void Adde(int u,int v){
to[ent]=v; nxt[ent]=head[u]; head[u]=ent++;
}
}E;
struct Matrix{
int r,c;
double a[2][MAXN];
void Reset(int _r,int _c){
r=_r; c=_c;
memset(a,0,sizeof(a));
}
Matrix operator - () const{
Matrix now; now.Reset(r,c);
for(int i=1;i<=now.r;i++)
for(int j=1;j<=now.c;j++)
now.a[i][j]=-a[i][j];
return now;
}
Matrix operator + (const Matrix &rtm) const{
Matrix now; now.Reset(r,c);
for(int i=1;i<=now.r;i++)
for(int j=1;j<=now.c;j++)
now.a[i][j]=a[i][j]+rtm.a[i][j];
return now;
}
Matrix operator - (const Matrix &rtm) const{
return *this+(-rtm);
}
Matrix operator * (const double k) const{
Matrix now; now.Reset(r,c);
for(int i=1;i<=now.r;i++)
for(int j=1;j<=now.c;j++)
now.a[i][j]=a[i][j]*k;
return now;
}
Matrix operator & (const Matrix &rtm) const{ //乘上rtm的倒置矩阵
Matrix now; now.Reset(r,rtm.r);
for(int i=1;i<=now.r;i++)
for(int j=1;j<=now.c;j++)
for(int k=1;k<=c;k++)
now.a[i][j]+=a[i][k]*rtm.a[j][k];
return now;
}
Matrix operator / (const double k) const{
return *this*(1/k);
}
}B[MAXN],c[MAXN],X;
Matrix *C[MAXN];
void buildequation(){
for(int i=1;i<=N;i++){
a[i][i]=-1; if(damage[i]) continue;
for(int e=E.head[i];e;e=E.nxt[e]){
int j=E.to[e]; if(j==N) continue;
a[i][j]+=1.0/cnt[j];
}
}
for(int i=1;i<=N;i++){
B[i].Reset(1,N); A[i]=a[i];
c[i].Reset(1,N); c[i].a[1][i]=1;
C[i]=&c[i];
}
}
void Gausselimination(int pos,int i){
if(pos==N+1||i==N+1) return;
for(int j=pos;j<=N;j++) if(dcmp(A[j][i])!=0){
swap(A[pos],A[j]); swap(C[pos],C[j]); break;
}
if(dcmp(A[pos][i])!=0)
for(int j=pos+1;j<=N;j++){
double k=A[j][i]/A[pos][i];
for(int l=i;l<=N;l++)
A[j][l]-=A[pos][l]*k;
(*C[j])=(*C[j])-(*C[pos])*k;
}
Gausselimination(pos+(dcmp(A[pos][i])!=0),i+1);
if(dcmp(A[pos][i])!=0){
for(int l=i+1;l<=N;l++)
B[i]=B[i]+B[l]*A[pos][l];
B[i]=(*C[pos])-B[i];
B[i]=B[i]/A[pos][i];
}
}
int main(){
ios::sync_with_stdio(0);
cin>>N>>M>>HP;
for(int i=1;i<=N;i++) cin>>damage[i];
for(int i=1,u,v;i<=M;i++){
cin>>u>>v;
E.Adde(u,v),cnt[u]++;
if(u!=v) E.Adde(v,u),cnt[v]++;
}
buildequation();
Gausselimination(1,1);
for(int h=HP;h>=1;h--){
X.Reset(1,N);
for(int i=1;i<=N;i++){
if(!damage[i]) continue;
if(h+damage[i]>HP) continue;
for(int e=E.head[i];e;e=E.nxt[e]){
int j=E.to[e]; if(j==N) continue;
X.a[1][i]-=dp[j][h+damage[i]]*1.0/cnt[j];
}
}
if(h==HP) X.a[1][1]-=1;
for(int i=1;i<=N;i++)
dp[i][h]=(B[i]&X).a[1][1];
ANS+=dp[N][h];
}
cout<<fixed<<setprecision(8)<<ANS<<endl;
return 0;
}
●BZOJ 3640 JC的小苹果的更多相关文章
- BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]
3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...
- BZOJ 3640: JC的小苹果
3640: JC的小苹果 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 425 Solved: 155[Submit][Status][Discus ...
- BZOJ 3640 JC的小苹果(逆矩阵)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3640 题意:给出一个无向图,从1走到n.开始是血量H,从u到达v时血量减少a[v] ...
- 3640: JC的小苹果 - BZOJ
让我们继续JC和DZY的故事.“你是我的小丫小苹果,怎么爱你都不嫌多!”“点亮我生命的火,火火火火火!”话说JC历经艰辛来到了城市B,但是由于他的疏忽DZY偷走了他的小苹果!没有小苹果怎么听歌!他发现 ...
- 【BZOJ】3640: JC的小苹果
题解 我们考虑列出期望方程组,\(dp[i][j]\)表示在第\(i\)个点血量为\(j\)的时候到达\(N\)点的概率,所有的\(dp[N][j]\)都是1,所有\(j < 0\)都是0 答案 ...
- 【BZOJ 3640】JC的小苹果 (高斯消元,概率DP)
JC的小苹果 Submit: 432 Solved: 159 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话 ...
- 【BZOJ3640】JC的小苹果 概率DP+高斯消元
[BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...
- bzoj千题计划291:bzoj3640: JC的小苹果
http://www.lydsy.com/JudgeOnline/problem.php?id=3640 dp[i][j] 表示i滴血到达j的概率 dp[i][j] = Σ dp[i+val[i]][ ...
- BZOJ3640 : JC的小苹果
设$f[i][j]$表示$hp$为$i$,在$j$点的概率,$d[i]$表示$i$的度数,$w[i]$表示经过$i$点要扣掉的血量. 对于$j$到$k$这条边,$f[i-w[k]][k]+=\frac ...
随机推荐
- Beta Scrum Day 5
听说
- Java Collections API和泛型
Java Collections API和泛型 数据结构和算法 学会一门编程语言,你可以写出一些可以工作的代码用计算机来解决一些问题,然而想要优雅而高效的解决问题,就要学习数据结构和算法了.当然对数据 ...
- 2017-2018-1 1623 bug终结者 冲刺003
bug终结者 冲刺003 by 王旌含 今日任务:优化界面布局,提供图片素材 需求 app图标.主界面图.主界面中按钮图:选择关卡图.关卡按键图:游戏中的小人.箱子.地板.墙.目的地:方向按钮:重置按 ...
- 团队作业2:需求分析&原型设计
Deadline: 2017-11-5 22:00PM,以博客发表日期为准. 评分基准: 按时交 - 有分,检查的项目包括后文的三个方面 需求分析 原型设计 编码规范 晚交 - 0分 迟交两周以 ...
- 201621123057 《Java程序设计》第9周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 在上一周的总结上做了一点补充 1.2 选做:收集你认为有用的代码片段 2. 书面作业 本次作业题集集合 1. ...
- JAVA_SE基础——63.String类的常用方法
获取方法int length() 获取字符串的长度char charAt(int index) 获取特定位置的字符 (角标越界)int indexOf(String str) 查找子串第一次出现的索 ...
- angular2 学习笔记 ( angular cli & npm version manage npm 版本管理 )
更新 : 2017-05-05 现在流行 Yarn ! 它是 facebook google 推出的东西. 算是补助 npm 做的不够好的地方. 源码依然是发布去 npm,只是下载接口换掉罢了哦. n ...
- 新概念英语(1-1)Excuse me!
Excuse me!Whose handbag is it? A:Excuse me! B:Yes? A:Is this your handbag? B:Pardon? A:Is this your ...
- C# 基于Bootstrap的三级联动
实现效果如图: 一.声明市.县.乡对应的下拉控件select <div class="form-group"> <label class="col-sm ...
- Java并发编程:synchronized和锁优化
1. 使用方法 synchronized 是 java 中最常用的保证线程安全的方式,synchronized 的作用主要有三方面: 确保线程互斥的访问代码块,同一时刻只有一个方法可以进入到临界区 保 ...