POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 6682 | Accepted: 2141 |
Description
A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.
There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding hole in other pieces, the precise location where the peg must fit is known.
Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn). The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).
Input
Line 1 < nVertices > < pegRadius > < pegX > < pegY >
number of vertices in polygon, n (integer)
radius of peg (real)
X and Y position of peg (real)
n Lines < vertexX > < vertexY >
On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.
Output
HOLE IS ILL-FORMED if the hole contains protrusions
PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position
PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position
Sample Input
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1
Sample Output
HOLE IS ILL-FORMED
PEG WILL NOT FIT
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double Dot(Vector a,Vector b){
return a.x*b.x+a.y*b.y;
} double Len(Vector a){return sqrt(Dot(a,a));}
double DisTS(Point p,Point a,Point b){
if(a==b) return Len(p-a);
Vector v1=b-a,v2=p-a,v3=p-b;
if(sgn(Dot(v1,v2))<) return Len(v2);
else if(sgn(Dot(v1,v3))>) return Len(v3);
else return abs(Cross(v1,v2)/Len(v1));
}
int PointInPolygon(Point p,Point poly[],int n){
int wn=;
for(int i=;i<=n;i++){
if(sgn(DisTS(p,poly[i],poly[i%n+]))==) return -;
int k=sgn(Cross(poly[i%n+]-poly[i],p-poly[i])),
d1=sgn(poly[i].y-p.y),d2=sgn(poly[i%n+].y-p.y);
if(k>&&d1<=&&d2>) wn++;
if(k<&&d2<=&&d1>) wn--;
}
return (bool)wn;
}
bool isConvex(Point poly[],int n){
int last=,now=;
for(int i=;i<=n;i++){
now=sgn(Cross(poly[i%n+]-poly[i],poly[(i+)%n+]-poly[i%n+]));
if(last==||now==||now*last>) last=now;
else return false;
}
return true;
}
int n;
double r,x,y,x2,y2;
Point poly[N];
void solve(){
if(isConvex(poly,n)){
Point c(x,y);
if(PointInPolygon(c,poly,n)){
int flag=;
for(int i=;i<=n;i++)
if(sgn(DisTS(c,poly[i],poly[i%n+])-r)<){flag=;break;}
if(flag) puts("PEG WILL FIT");
else puts("PEG WILL NOT FIT");
}else puts("PEG WILL NOT FIT");
}else puts("HOLE IS ILL-FORMED");
}
int main(int argc, const char * argv[]) {
while(true){
n=read();if(n<) break;
scanf("%lf%lf%lf",&r,&x,&y);
for(int i=;i<=n;i++)
scanf("%lf%lf",&poly[i].x,&poly[i].y);
solve();
}
return ;
}
POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5456 Acc ...
- POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
- POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...
- POJ 1584 A Round Peg in a Ground Hole
先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include ...
- POJ 1584 A Round Peg in a Ground Hole --判定点在形内形外形上
题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内. 解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆 ...
- 简单几何(点的位置) POJ 1584 A Round Peg in a Ground Hole
题目传送门 题意:判断给定的多边形是否为凸的,peg(pig?)是否在多边形内,且以其为圆心的圆不超出多边形(擦着边也不行). 分析:判断凸多边形就用凸包,看看点集的个数是否为n.在多边形内用叉积方向 ...
- POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
随机推荐
- 在windows下详解:大端对齐和小端对齐
计算机的内存最小单位是什么?是BYTE,是字节.一个大于BYTE的数据类型在内存中存放的时候要有先后顺序. 高内存地址放整数的高位,低内存地址放整数的低位,这种方式叫倒着放,术语叫小端对齐.电脑X86 ...
- TCP层的分段和IP层的分片之间的关系 & MTU和MSS之间的关系 (转载)
首先说明:数据报的分段和分片确实发生,分段发生在传输层,分片发生在网络层.但是对于分段来说,这是经常发生在UDP传输层协议上的情况,对于传输层使用TCP协议的通道来说,这种事情很少发生. 1,MTU( ...
- 同一台电脑使用 gitlab 和 github 配置
Git 客户端与服务器端的通信支持多种协议,ssh 最常用.ssh的公钥登录流程,用户将自己的公钥存储在远程主机,登录时,远程主机会向用户发送一条消息,用户用自己的私钥加密后,再发给服务器.远程主机用 ...
- Android按下home键后重新打开app进入主activity的问题
问题阐述: 当我们写一款App的时候,势必会有这种情况:用户已经进行了多级的操作,现返回栈中已存在多个activity,那么这个时候我们想回到最初的activity难道要一层层的返回吗,对用户来说 无 ...
- union 时只能查出一个表中的信息,另一个表只能查出字段
原因:news表中title字段的编码,与brand表中的编码不一致导致 y
- win7 64位wamp2.5无法启动MSVCR110.DLL丢失听语音
从网上下载wampserver2.5 64位的PHP集成环境,根本无法使用,说是丢失了MSVCR110.DLL,然后再网上找了一大堆资料工具都无用,比如下微软的了vcredist_x64,重新卸载安装 ...
- DALI 2.0解码模块
DALI2.0调光解码模块使用手册 一.概述(联系人:张先生,电话:13923882807,QQ:813267849) 欢迎使用本公司的DALI 2.0解码模块,该模块支持"DALI第二套协 ...
- PostgreSQL 的 distinct on 的理解
摘录自:http://www.cnblogs.com/gaojian/archive/2012/09/05/2671381.html 对于 select distinct on , 可以利用下面的例子 ...
- [知了堂学习笔记]_Java代码实现MySQL数据库的备份与还原
通常在MySQL数据库的备份和恢复的时候,多是采用在cmd中执行mysql命令来实现. 例如: mysqldump -h127.0.0.1 -uroot -ppass test > d:/tes ...
- Hyperledger Fabric CouchDB as the State Database
使用CouchDB作为状态数据库 状态数据库选项 状态数据库包括LevelDB和CouchDB.LevelDB是嵌入在peer进程中的默认键/值状态数据库,CouchDB是一个可选的外部状态数据库.与 ...