[POI2007]ATR-Tourist Attractions

题目链接(https://www.luogu.org/problemnew/show/P3451)

这种稠密图还是建议你不要跑spfa,你跑dijkstra堆优化会快很多

要看原图戳我(左下角被洛谷图标遮住了)

题意

题目给你的意思就是

求1到n的

必须经过一些点(2→k+1)

而且过这些点还要讲先后顺序

的最短路长度

解题

首先看到k<=20

它这是告诉你

对于这k个必须经过的点

你怎么暴力怎么搞

所以我们对这k个点每个点单元最短路(dijkstra)一下,求出他们到所有点的距离。dis[i][j]表示由i出发到j的距离

然后是处理先后关系。我们建立一个数组r[i]r[i]的值,表示到达第i个点之前,必须停留的点的状压集合,1为必经,0为无所谓(因为k<=20所以可以状压)

接着就是状压DP。这里f[i][j]表示当前状态集合为i(1为停留过,0为没有),目前停留在j的最短路径。

转移就是普通状压dp套路,从0到(1<<k-1)[全都有] 枚举状态,找到一个集合中存在的点和一个集合中不存在的点,如果当前状态满足这个不在集合内的点的r[i](也就是经过它之前必须经过的点都经过了)那么就进行转移。

初始状态,f设为INF,如果一个点i在停留之前不需要在任何点停留,那么f[1][i]=dis[1][i]f[0][1]=0

几点注意(长者的经验教训)

1.当k=0时直接跑最短路不然会WA第六个点

2.INF不能开太大(第三个点会爆成负数)

3.数组要卡空间,不然要么RE要么MLE

4.如果数组太大最好不用memset,最好自己给数组赋值,这样会快很多

5.注意位运算的先后顺序,能打括号就打括号。

代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue> #define rg register int
#define RG register
#define ll long long
#define il inline
#define INF 1000000000 // INF 不要太大会飞起
#define mk make_pair
using namespace std;
typedef pair <int,int> P; il int gi()
{
rg x=0,o=0;RG char ch=getchar();
while((ch!='-')&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') o=1,ch=getchar();
while('0'<=ch&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return o?-x:x;
} struct Edge{int to,nxt,w;}e[300001];
int Ehead[30001],Ecnt=1;
il void Eadd(rg u,rg v,rg w)
{
e[Ecnt]=(Edge){v,Ehead[u],w};
Ehead[u]=Ecnt++;
e[Ecnt]=(Edge){u,Ehead[v],w};
Ehead[v]=Ecnt++;
} int n,m,k,g;
int r[32],dis[32][30001];
priority_queue <P,vector<P>,greater<P> > Q;
il void dijkstra(rg rt)
{
for(rg i=1;i<=n;++i) dis[rt][i]=INF;
while(!Q.empty()) Q.pop();
Q.push(mk(0,rt));dis[rt][rt]=0;
while(!Q.empty())
{
rg u=Q.top().second;Q.pop();
for(rg i=Ehead[u];i;i=e[i].nxt)
{
rg v=e[i].to;
if(dis[rt][v]>dis[rt][u]+e[i].w)
{
dis[rt][v]=dis[rt][u]+e[i].w;
Q.push(mk(dis[rt][v],v));
}
}
}
}
// dijkstra 无vis数组 int f[1<<20][25],Ans=INF;
int a,b,u,v,w;
int main()
{
n=gi(),m=gi(),k=gi();
for(rg i=1;i<=m;++i)
{
u=gi(),v=gi(),w=gi();
Eadd(u,v,w);
} if(!k)
{
dijkstra(1);
printf("%d",dis[1][n]);
return 0;
} //不加这个判断第6个点会WA g=gi();
for(rg i=1;i<=g;++i)
{
a=gi(),b=gi();
r[b] |= (1<<(a-2));
}
for(rg i=1;i<=k+1;++i) dijkstra(i); for(rg i=0;i<=(1<<k)-1;++i)
for(rg j=1;j<=k+1;++j)
f[i][j]=INF;
// 数组大就尽量不用memset f[0][1]=0;
for(rg i=2;i<=k+1;++i)
if(!r[i])
f[1<<(i-2)][i]=dis[1][i]; for(rg i=1;i<=(1<<k)-1;++i)
for(rg j=0;j<k;++j)
if(i&(1<<j))
for(rg l=0;l<k;++l)
if( !(i&(1<<l)) && (i|r[l+2])==i )
f[i|(1<<l)][l+2]=min(f[i|(1<<l)][l+2],f[i][j+2]+dis[j+2][l+2]); for(rg i=2;i<=k+1;++i)
Ans=min(Ans,f[(1<<k)-1][i]+dis[i][n]);
printf("%d",Ans);
return 0;
}

[POI2007]ATR-Tourist Attractions [TPLY]的更多相关文章

  1. csp-s模拟48,49 Tourist Attractions,养花,画作题解

    题面:https://www.cnblogs.com/Juve/articles/11569010.html Tourist Attractions: 暴力当然是dfs四层 优化一下,固定两个点,答案 ...

  2. [POI2007]Tourist Attractions

    题目大意: 给你一个$n(n\leq 2\times 10^4)$个点,$m(m\leq 2\times 10^5)$条边的带边权的连通图.其中有$k(k\leq 20)$个关键点.关键点之间有$g$ ...

  3. LYDSY模拟赛day1 Tourist Attractions

    /* 假设路径是 a − b − c − d,考虑枚举中间这条边 b − c,计 算有多少可行的 a 和 d. 设 degx 表示点 x 的度数,那么边 b − c 对答案的贡献为 (degb − 1 ...

  4. 解题:POI 2007 Tourist Attractions

    题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...

  5. 【JZOJ4857】Tourist Attractions(Bitset)

    题意:给定一个n个点的无向图,求这个图中有多少条长度为4的简单路径. n<=1500 思路: #include<map> #include<set> #include&l ...

  6. [CSP-S模拟测试]:Tourist Attractions(简单图论+bitset)

    题目描述 在美丽的比特镇一共有$n$个景区,编号依次为$1$到$n$,它们之间通过若干条双向道路连接.$Byteasar$慕名来到了比特镇旅游,不过由于昂贵的门票费,他只能负担起$4$个景区的门票费. ...

  7. 比特镇旅游(Tourist Attractions)【暴力+Bitset 附Bitset用法】

    Online Judge:NOIP2016十连测第一场 T2 Label:暴力,Bitset 题目描述 在美丽的比特镇一共有n个景区,编号依次为1到n,它们之间通过若干条双向道路连接. Byteasa ...

  8. D. 旅游景点 Tourist Attractions 状压DP

    题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD 不希望在刚吃过一顿大餐之后立刻去下一 ...

  9. 旅游景点 Tourist Attractions 题解

    题面在这里 再次破了纪录,连做了3天... 让我们从头来一点一点分析 1.预处理 先看题面,乍一看貌似是个图论题,有n个点m条边,给定一些必须经过的点和强制经过顺序,求一条最短路 我们发现n和m都比较 ...

随机推荐

  1. Flink入门使用

    完全参考:Flink1.3QuickStart 启动本地运行 首先找一台安装了hadoop的linux. 将安装包解压,到bin目录启动local模式的脚本. tar -zxvf flink-1.3. ...

  2. php 处理并发问题

    对于商品抢购等并发场景下,可能会出现超卖的现象,这时就需要解决并发所带来的这些问题了 在PHP语言中并没有原生的提供并发的解决方案,因此就需要借助其他方式来实现并发控制. 方案一:使用文件锁排它锁 f ...

  3. Bruce Eckel的资源

    1 GitHub的技术博客 2 On Java 8 – Bruce Eckel 3 artima_weblogs - Bruce Eckel 4 back issues 5 eckel-oo-prog ...

  4. OpenCMS模板的导出和OpenCMS网站的导出

    1.OpenCMS模板的导出 (1)切换到Administration视图,单击Module Management,如图所示:   (2)导出位置:tomcat根目录\webapps\opencms\ ...

  5. Java经典编程题50道之四十八

    某个公司采用公用电话传递数据,数据是四位的整数,在传递过程中是加密的,加密规则如下: 每位数字都加上5,然后用和除以10的余数代替该数字, 再将第一位和第四位交换,第二位和第三位交换. public ...

  6. 我不知道的行高——line-height

    概述 对于块级元素,CSS属性line-height指定了元素内部line-boxes的最小高度. 对于非替代行内元素,line-height用于计算line box的高度. 对于替代行内元素,如bu ...

  7. 箱型图boxplot函数的使用

    主要参数: medlwd:设置中位线宽度 whiskcol:设置虚线颜色 staplecol:设置顶端颜色 outcol:离群值颜色 相应的具体位置: outline=FALSE:去除离群值 outp ...

  8. CSS 圣杯布局升级版---多个固定宽度一个自适应宽度

    1.一个div固定,一个div自适应宽度.两种情况,固定在左或者在右. HTML: <div class="box1"> <div class="mai ...

  9. WPF 照片墙的实现

    主要参照了DevExpress的PhotoGallery实例的实现. 效果如下: 照片墙核心代码如下: PhotoGallery.xaml <local:CarouselDemoModule x ...

  10. 情景linux--如何摆脱深路径的频繁切换烦恼?

    情景 通常情况下,在linux系统上切换目录的成本很低,使用cd命令就可以了.如果需要在一个目录的不同的子目录和其父目录之间切换,进入到这个目录之后,再使用相对路径会比较方便.如果要切换的目录的路径较 ...