学习一波用markdown写题解的姿势QAQ

题意

给你一个w*h的矩形网格,每次随机选择两个点,将以这两个点为顶点的矩形内部的所有小正方形染黑,问染了k次之后期望有多少个黑色格子.

分析

一开始看错题以为是求染黑所有格子的期望步数差点吓傻了...然后发现求的是染黑格子的期望个数,那么就可以无脑上期望的线性性了.

\(\text{某个格子对期望的贡献}\)

\(=\text{这个格子最后被染黑的概率}\)

\(=1-这个格子最后没被染黑的概率\)

\(=1-(染色一次时这个格子这个格子没有被染黑的概率)^k\)

那么单次染色无法染黑某个格子的概率只需要数一数总的选择方案数和包含这个格子的选择方案数即可.

注意包含这个格子的矩形和包含这个格子的选择方案不是一一对应的.

某个长宽均大于等于2的矩形对应4种选择的的方案

(可以选择左上-右下 或 左下-右上,每种选择方式又对应两种方案,因为选择的两个顶点是有顺序的,下面两种类似)

长宽有一个为1的矩形对应2种选择的方案

长宽均为1的矩形对应1种选择的方案

注意到关于矩形的中心点对称的位置算出来的结果是一样的,可以利用这个将复杂度降低到1/4,然而我还是比bz上的榜一慢三倍...榜一太神啦

	#include<cstdio>
typedef long long ll;
typedef double ld;
ld qpow(ld a,int x){
ld ans=1;
for(;x;x>>=1,a=a*a){
if(x&1)ans=ans*a;
}
return ans;
}
int k,w,h;ll tot;
ld p(int x,int y){
long long sum=0;
int x1=x,x2=w-x+1,y1=y,y2=h-y+1;
sum=x1*1ll*y1*y2*x2*4-x1*x2*2-y1*y2*2+1;
//printf("%d %d %lld %lld\n",x,y,sum,tot);
return (tot-sum)/(ld)(tot);
}
int main(){
scanf("%d%d%d",&k,&w,&h);
ld ans=w*h;tot=w*1ll*w*1ll*h*1ll*h;
//printf("%.4f\n",(double)p(1,1));
int ww=w/2,hh=h/2;
for(int i=1;i<=ww;++i){
for(int j=1;j<=hh;++j){//printf("a%d %d\n",i,j);
ans-=qpow(p(i,j),k)*4;
}
}
if(h&1){
for(int i=1;i<=ww;++i){//printf("b%d %d\n",i,h/2+1);
ans-=qpow(p(i,h/2+1),k)*2;
}
}
if(w&1){
for(int j=1;j<=hh;++j){//printf("c%d %d\n",w/2+1,j);
ans-=qpow(p(w/2+1,j),k)*2;
}
}
if((h&1)&&(w&1)){//printf("d%d %d\n",w/2+1,h/2+1);
ans-=qpow(p(w/2+1,h/2+1),k);
}
printf("%.0f\n",(double)ans);
return 0;
}

bzoj2969 矩形粉刷的更多相关文章

  1. bzoj2969 矩形粉刷 概率期望

    此题在bzoj是权限题,,,所以放另一个oj的链接 题解: 因为期望线性可加,所以可以对每个方格单独考虑贡献.每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)每个方格至少 ...

  2. bzoj2969矩形粉刷

    题解: 和前面那个序列的几乎一样 容斥之后变成求不覆盖的 然后再像差分的矩形那样 由于是随便取的所以这里不用处理前缀和直接求也可以 代码: #include <bits/stdc++.h> ...

  3. 【BZOJ2969】矩形粉刷 概率+容斥

    [BZOJ2969]矩形粉刷 Description 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以 ...

  4. 【bzoj2969】矩形粉刷 期望

    题目描述 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩 ...

  5. bzoj 2969: 矩形粉刷 概率期望

    题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...

  6. BZOJ 2969: 矩形粉刷(期望)

    BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...

  7. bzoj 2969: 矩形粉刷 概率期望+快速幂

    还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. [BOT] 一种android中实现“圆角矩形”的方法

    内容简介 文章介绍ImageView(方法也可以应用到其它View)圆角矩形(包括圆形)的一种实现方式,四个角可以分别指定为圆角.思路是利用"Xfermode + Path"来进行 ...

随机推荐

  1. 一个很好的MySQL在线学习平台

    一个很好的MySQL在线学习平台 https://www.techonthenet.com/sql/

  2. nginx 浏览php的时候会变成下载

    php的时候会变成下载:这是因为nginx没有设置好碰到php文件时,要传递到后方的php解释器.看看你的nginx.conf配置,里面有没有这样的设置:location ~ .*\.php$ {fa ...

  3. CSS中可以继承和不可继承的常见属性

    一.无继承性的属性 1.display:规定元素应该生成的框的类型 2.文本属性: vertical-align:垂直文本对齐 text-decoration:规定添加到文本的装饰 text-shad ...

  4. Mysql数据库查询不区分大小写解决方案

  5. header 头各种类型文件下载

    function down_file($url,$type='application/zip'){     header("Cache-Control: public");     ...

  6. HTTP协议学习笔记

    一.什么是HTTP协议 HTTP协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器 ...

  7. Servlet中文乱码问题解决办法

    首先对于源jsp网站和servlet里面的字符集要一样,一般支持中文的字符集为UTF-8最好采用这个字符集(除此之外还有gb2312); 对于源jsp文件的代码中需要设置 设置你的page里面的字符集 ...

  8. hihoCoder 1015 KMP算法

    题意:经典字符串匹配算法.给定原串和模式串,求模式串在原串中出现的次数.算法讲解 AC代码 #include <cstdio> #include <cmath> #includ ...

  9. nyoj161 取石子 (四) 威佐夫博弈

    思路:详细证明见博弈总结 如何判断威佐夫博弈的奇异局势? 对于状态(a, b),c = b - a,如果是奇异局势必定满足 a == c * (1+√5)/ 2. AC代码 #include < ...

  10. 依赖Aspose.Cells Excel 导出

    public static void SaveExcel() { //新建工作簿 Workbook workbook = new Workbook(); //工作簿 Worksheet sheet = ...