【Math for ML】矩阵分解(Matrix Decompositions) (下)
I. 奇异值分解(Singular Value Decomposition)
1. 定义
Singular Value Decomposition (SVD)是线性代数中十分重要的矩阵分解方法,被称为“线性代数的基本理论”,因为它不仅可以运用于所有矩阵(不像特征值分解只能用于方阵),而且奇异值总是存在的。
SVD定理
设一个矩阵\(A^{m×n}\)的秩为\(r∈[0,min(m,n)]\),矩阵\(A\)的奇异值分解形式如下:
\[A=U\Sigma V^T \tag{1.1.1}\]
其中\(U∈R^{m×m}\)是一个正交矩阵(即列向量\(u_i,i=1,...,m\)互相正交),\(V∈R^{n×n}\)也是一个正交矩阵(即列向量\(v_i,i=1,...,n\)互相正交),\(\Sigma\)是一个\(m×n\)的矩阵,且满足\[\Sigma_{ii}=\sigma_i≥0 \\ \Sigma_{ij}=0,i≠j\]
上面的\(\sigma_i\)称为奇异值(singular values),\(u_i\)称为左奇异值(left-singular values),\(v_i\)称为右奇异值(right-singular values)。另外通常默认有\(\sigma_1≥...≥\sigma_r≥0\) 。
注意:矩阵\(A\)是一个长方形矩阵,不一定是方阵,另外\(\Sigma\)和矩阵\(A\)的维度相同,并且其包含一个对角子矩阵(diagonal submatrix)。
2. 图解SVD
对于奇异值分解可以从两个角度进行理解:一是将SVD视为对基向量组(bases),即坐标系的一顺序变换,二是将SVD视为对于数据点的变换。
一般来说要让矩阵\(A\)作用于另一个矩阵,都是左乘\(A\),所以由公式(1)可知道首先是\(V^T\),然后是\(\Sigma\),最后是矩阵\(U\)变换。所以矩阵\(A\)的变换实际上是经过了三个步骤,如下图所示(为方便理解使用了二维和三维图像进行说明):
假设左上角的单位圆是在\(R^n\)空间,其标准基用\(B=[v_1,v_2]\)表示。左下角的圆也在\(R^n\)空间里,其标准基用\(\tilde{B}=[e_1,e_2]\)表示,右下角的圆在\(R^m\)空间里,其标准基用\(\tilde{C}\)表示。右上角的圆在\(R^m\)空间里。
- 由左上角到左下角:可以很清楚的看到\(V^T∈R^{n×n}\)的作用是对最开始的坐标轴(或标准基)(\(B\))还原成canonical basis(\(\tilde{B}\))。所以\(V^T\)的作用是将坐标轴由\(B\)转变成\(\tilde{B}\)。
- 由左下角到右下角:经过\(\Sigma\)矩阵变换后从\(R^n\)空间转换到了\(R^m\)空间。上图是从二维空间变成了三维空间,即增加了z轴。当然维度也可以减少。此外单位圆还是处在\([e_1,e_2]\)空间内(即\(x,y\)轴组成的空间内),而且还会根据奇异值的大小做相应比例的伸缩。
- 右下角到右上角: 矩阵\(U\)继续对\([e_1,e_2]\)基做变换,增加的那个维度(z轴)方向不做变化。
下图更加形象地展示了奇异值分解的作用,变换过程和上面一样,故不再赘述:
3. SVD计算
本小节内容不证明SVD的存在性。
在介绍SVD如何计算之前,首先回顾一下【Math for ML】矩阵分解(Matrix Decompositions) (下)中介绍过任何对称矩阵都能对角化,其公式如下:
\[S=S^T=PDP^T\]
所以一个对称矩阵的奇异值分解是十分相似的,即
\[S=U\Sigma V^T\]
对比之后可知有\(U=P,V=P,\Sigma=D\)
另外我们还需要知道的是对于任意矩阵\(A∈R^{m×n}\),其转置矩阵和其本身相乘之后得到的矩阵都是对称矩阵,即\(A^TA∈R^{n×n}\)和\(AA^T∈R^{m×m}\)均为对称矩阵。(证明略)
接下来结合SVD公式给出对任意矩阵\(A∈R^{m×n}\)SVD计算的推导过程:
- 计算\(V\)
已知\(A^TA\)可作如下对角化运算,且其特征值\(λ_i≥0\)
\[
\begin{align}
A^TA=PDP^T=P
\left[
\begin{matrix}
λ_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & λ_n
\end{matrix}
\right]
P^T \tag{1.3.1} \\
\end{align}
\]
因为任何矩阵都可做奇异值分解,故有
\[
A^TA=(U\Sigma V^T)^T(U\Sigma V^T)=V\Sigma^TU^TU\Sigma V^T \tag{1.3.2}
\]
因为\(U\)为正交矩阵,所以\(U^TU=I\),所以(1.3.2)式进一步简化可得
\[
\begin{align}
A^TA=V\Sigma^T\Sigma V^T=V
\left[
\begin{matrix}
\sigma_1^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_n^2
\end{matrix}
\right]
V^T \tag{1.3.3} \\
\end{align}
\]
由(1.3.1)和(1.3.3)可得
\[
V=P \\
\sigma_i^2=\lambda_i \tag{1.3.4}
\]
所以任意矩阵\(A\)的右奇异矩阵\(V\)是\(A^TA\)的特征矩阵\(P\)。
- 计算\(U\)
和求\(V\)类似,这里不再赘述。\(U\)即为\(AA^T\)的特征矩阵。
- 计算\(\Sigma\)
注意上面两步中已经求出了\(\sigma_i^2\),接下来要做的就是把上面所求出的\(\sigma_i^2\)从大到小排序并开根号,且\(\Sigma\)要与\(A\)的维度保持一致
具体的SVD计算示例可参见奇异值分解(SVD)计算过程示例。
4. 特征值分解(EVD) vs. 奇异值分解(SVD)
下面对特征值分解\(A=PDP^{-1}\)和奇异值分解\(A=U\Sigma V^T\)作如下总结和对比:
- SVD对于任意矩阵都存在;而EVD只能在n阶方阵的基础上才能被定义,而且只有当方阵满秩,即有n个独立的特征向量条件下才可以做特征值分解;
- 特征值分解后得到的矩阵\(P\)不必须是正交矩阵,也就是说\(P\)可以起到伸缩和旋转的作用;而SVD中的\(U,V\)矩阵都必须是正交矩阵,所以这两个矩阵只能起到旋转变换的作用,起伸缩变换作用的是矩阵\(\Sigma\)。
- 特征值分解和奇异值分解都由以下三个线性映射步骤组成:
1.Change of basis in the domain
2.Independent scaling of each new basis vector and mapping from domain to co-domain
3.Change of basis in the co-domain
【Math for ML】矩阵分解(Matrix Decompositions) (下)的更多相关文章
- 【Math for ML】矩阵分解(Matrix Decompositions) (上)
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...
- [线性代数] 矩阵代数進階:矩阵分解 Matrix factorization
Matrix factorization 导语:承载上集的矩阵代数入门,今天来聊聊进阶版,矩阵分解.其他集数可在[线性代数]标籤文章找到.有空再弄目录什麽的. Matrix factorization ...
- 矩阵分解(Matrix Factorization)与推荐系统
转自:http://www.tuicool.com/articles/RV3m6n 对于矩阵分解的梯度下降推导参考如下:
- 推荐系统之矩阵分解及C++实现
1.引言 矩阵分解(Matrix Factorization, MF)是传统推荐系统最为经典的算法,思想来源于数学中的奇异值分解(SVD), 但是与SVD 还是有些不同,形式就可以看出SVD将原始的评 ...
- ML.NET 示例:推荐之矩阵分解
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- Matrix Factorization SVD 矩阵分解
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...
- ML.NET 示例:推荐之One Class 矩阵分解
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering ...
- 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤
[论文标题]List-wise learning to rank with matrix factorization for collaborative filtering (RecSys '10 ...
随机推荐
- Luogu P3305 [SDOI2013]费用流 二分 网络流
题目链接 \(Click\) \(Here\) 非常有趣的一个题目. 关键结论:所有的单位费用应该被分配在流量最大的边上. 即:在保证最大流的前提下,使最大流量最小.这里我们采用二分的方法,每次判断让 ...
- bzoj1233 单调队列优化dp
https://www.lydsy.com/JudgeOnline/problem.php?id=1233 数据结构优化dp的代码总是那么抽象 题意:奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Be ...
- 2017-12-18python全栈9期第三天第一节之昨天内容回顾与作业讲解用户三次机会再试试
#!/user/bin/python# -*- coding:utf-8 -*-username = "zd"password = "123"i = 3whil ...
- ansible Api 2.3-2.4
官网示例(python3) 说明: 在学习2.0 api的过程中遇到了一个坑,最新版的ansible(2.4)和2.3版本api引用时发生了变化,本文主要使用2.3 api进行操作,2.4只做分析 a ...
- saltstack syndic
#syndic 相当于master的代理,master通过syndic代理控制node主机 master <------ syndic+master <---------- node ma ...
- 面向对象【day08】:类的起源与metaclass(二)
本节内容 1.概述 2.类的起源 3.__new__方法 4.__metaclass__方法 一.概述 前面我们学习了大篇幅的关于类,通过类创建对象,那我们想知道这个类到底是怎么产生的呢?它的一切来源 ...
- Linux记录-文件格式
yum -y install dos2unix dos2unix filename
- Hadoop记录-监控几个思路
1.存活监控 基本监控,主要对进程的存活.端口连通性.url可检测性等指标进行监控. 2.2 可用性监控 主要指对用户而言是否可用,能否返回预期结果,通常部署在一些业务主流程或一些关键环节,如接口调用 ...
- golang使用redis
redigo使用 手册地址:http://godoc.org/github.com/garyburd/redigo/redis github地址:https://github.com/garyburd ...
- jQuery使用(八):运动方法
show().hide().toggle() 参数:null或(duration,easing,callblack) fadeIn().fadeout().fadeToggle().fadeTo() ...