题目分析:

对于一个$add$操作,它的特点是与树状数组的查询相同,会给$1$到它自己产生影响,而$query$操作则会途径所有包含它的树状数组点。现在$add$操作具有前向性(不会影响之后的点)。所以实际上这是求后缀和。

现在我们知道,对于$query(l,r)$,它等于${Xor}_{i=l-1}^{r-1}A[i]$。与原答案异或,得到$A[l-1] \oplus A[r]$,若它为$1$则假,否则为真。所以我们把它看作平面上的点,对于一个$add(l,r)$操作,会对右端点在其中的产生$\frac{1}{r-l+1}$的改变影响,对两端都在其中的产生$\frac{2}{r-l+1}$的改变影响,对左端点在其中的产生$\frac{1}{r-l+1}$的改变影响。标记合并不难。然后标记永久化一下就行了。

对于$l=1$的单独处理。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; const int mod = ; int n,m,num=,xL,xR,yL,yR,ans;
struct qy{
int cas,l,r;
}Q[maxn]; struct node{
int ch[],root,data;
}T[maxn*]; int fast_pow(int now,int pw){
int res = ,bit = ,fun = now;
while(bit <= pw){
if(bit & pw) res = (1ll*res*fun)%mod;
fun = (1ll*fun*fun)%mod; bit<<=;
}
return res;
} int merge(int p1,int p2){return ((1ll*p1*(-p2)+1ll*p2*(-p1))%mod+mod)%mod;} void Query(int now,int tl,int tr,int l,int r){
int pls = T[now].root,ll = tl,rr = n;
while(true){
int mid = (ll+rr)/;
ans = merge(ans,(-T[pls].data+mod)%mod);
if(mid >= r){
if(!T[pls].ch[]) break;
else pls = T[pls].ch[];
rr = mid;
}else{
if(!T[pls].ch[]) break;
else pls = T[pls].ch[];
ll = mid+;
}
}
int mid = (tl+tr)/;
if(mid >= l){if(T[now].ch[])Query(T[now].ch[],tl,mid,l,r);}
else{if(T[now].ch[])Query(T[now].ch[],mid+,tr,l,r);}
} void M2(int now,int tl,int tr,int data){
if(tl >= yL && tr <= yR){
T[now].data = merge(T[now].data,data);
return;
}
int mid = (tl+tr)/;
if(!T[now].ch[] && !T[now].ch[]){
T[now].ch[] = ++num; T[now].ch[] = ++num;
T[num-].data = ; T[num].data = ;
}
if(mid >= yL) M2(T[now].ch[],tl,mid,data);
if(mid < yR) M2(T[now].ch[],mid+,tr,data);
} void Modify(int now,int tl,int tr,int data){
if(tl >= xL && tr <= xR){
M2(T[now].root,tl,n,data);
return;
}
int mid = (tl+tr)/;
if(mid >= xL){
if(T[now].ch[]==){
num++;T[now].ch[] = num;
num++;T[num-].root = num;T[num].data = ;
}
Modify(T[now].ch[],tl,mid,data);
}
if(mid < xR){
if(T[now].ch[]==){
num++;T[now].ch[] = num;
num++;T[num-].root = num;T[num].data = ;
}
Modify(T[now].ch[],mid+,tr,data);
}
} void read(){
T[].root = ; T[].data = ;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++) scanf("%d%d%d",&Q[i].cas,&Q[i].l,&Q[i].r);
} void work(){
int cnt = ;
for(int i=;i<=m;i++){
if(Q[i].cas == ){
cnt^=; xL = ,xR = Q[i].l-,yL = Q[i].l,yR = Q[i].r;
Modify(,,n,fast_pow(Q[i].r-Q[i].l+,mod-));
xL = Q[i].l,xR = Q[i].r,yL = Q[i].l,yR = Q[i].r;
Modify(,,n,*fast_pow(Q[i].r-Q[i].l+,mod-)%mod);
xL = Q[i].l,xR = Q[i].r,yL = Q[i].r+,yR = n;
Modify(,,n,fast_pow(Q[i].r-Q[i].l+,mod-));
}else{
ans = ; Query(,,n,Q[i].l-,Q[i].r);
if((Q[i].l == && (!cnt))||Q[i].l != ) printf("%d\n",ans);
else printf("%d\n",(-ans+mod)%mod);
}
}
} int main(){
read();
work();
return ;
}

LOJ2251 [ZJOI2017] 树状数组【线段树】【树套树】的更多相关文章

  1. hdu 1166:敌兵布阵(树状数组 / 线段树,入门练习题)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  2. 洛谷P2414 阿狸的打字机 [NOI2011] AC自动机+树状数组/线段树

    正解:AC自动机+树状数组/线段树 解题报告: 传送门! 这道题,首先想到暴力思路还是不难的,首先看到y有那么多个,菜鸡如我还不怎么会可持久化之类的,那就直接排个序什么的然后按顺序做就好,这样听说有7 ...

  3. 树状数组 && 线段树应用 -- 求逆序数

    参考:算法学习(二)——树状数组求逆序数 .线段树或树状数组求逆序数(附例题) 应用树状数组 || 线段树求逆序数是一种很巧妙的技巧,这个技巧的关键在于如何把原来单纯的求区间和操作转换为 求小于等于a ...

  4. 差分+树状数组 线段树【P2357】 守墓人

    题目描述-->p2357 守墓人 敲了一遍线段树,水过. 树状数组分析 主要思路: 差分 简单介绍一下差分(详细概念太麻烦,看下面. 给定一个数组 7 8 6 5 1 8 18 20 35 // ...

  5. hdu1394(枚举/树状数组/线段树单点更新&区间求和)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题意:给出一个循环数组,求其逆序对最少为多少: 思路:对于逆序对: 交换两个相邻数,逆序数 +1 ...

  6. 树状数组&线段树

    先是树状数组. 令这棵树的结点编号为C1,C2...Cn.令每个结点的值为这棵树的值的总和,那么容易发现: C1 = A1 C2 = A1 + A2 C3 = A3 C4 = A1 + A2 + A3 ...

  7. 【bzoj4785】[Zjoi2017]树状数组 线段树套线段树

    题目描述 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作 ...

  8. 数据结构--树状数组&&线段树--基本操作

    随笔目的:方便以后对树状数组(BIT)以及基本线段树的回顾 例题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 例题:hdu 1166 敌兵布阵 T ...

  9. BZOJ_1901_&_ZJU_2112_Dynamic_Rankings_(主席树+树状数组/线段树+(Treap/Splay))

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1901 给出一个长度为n的数列A,有m次询问,询问分两种:1.修改某一位置的值;2.求区间[l, ...

  10. BZOJ 3333 排队计划 树状数组+线段树

    题目大意:给定一个序列.每次选择一个位置,把这个位置之后全部小于等于这个数的数抽出来,排序,再插回去,求每次操作后的逆序对数 首先我们每一次操作 对于这个位置前面的数 因为排序的数与前面的数位置关系不 ...

随机推荐

  1. Arduino通过MAX9814实现录音

    如果通过Arduino进行录音不是单纯地接一个驻极电容MIC就可以的,因为自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码.即PCM编码.PCM通过抽样.量化.编码三个步骤将连续 ...

  2. Python中IO概述

    Python中的io模块是用来处理各种类型的I/O操作流.主要有三种类型的I/O类型:文本I/O(Text I/O),二进制I/O(Binary I/O)和原始I/O(Raw I/O).它们都是通用类 ...

  3. PS调出唯美冷色情侣婚纱写真照

    一.打开PS原片,原片是一张JPG格式的片子 色温较高整个画面较红离对着上面的我们标准的韩式色调我们来进行调节吧 ,我就不打太多文字解释一些基本常规了 二.韩式婚纱内景喜欢加点烟雾.其实我本人是不太喜 ...

  4. Python“Non-ASCII character 'xe5' in file”报错问题

    今天在编译一个Python程序的时候,一直出现“Non-ASCII character 'xe5' in file”报错问题 SyntaxError: Non-ASCII character '\xe ...

  5. MYSQL 表大小限制

    MySQL 3.22限制的表大小为4GB.由于在MySQL 3.23中使用了MyISAM存储引擎,最大表尺寸增加到了65536TB(2567 – 1字节).由于允许的表尺寸更大,MySQL数据库的最大 ...

  6. 头文件带和不带.h的区别

    所有C++标准库的头文件都是没有.h结尾的.这么做是为了区分,C标准库的头文件和C++标准库的头文件.比如最具代表性的: #include <string.h> // C 标准库头文件,包 ...

  7. sqlserver常用语法

    --临时表 IF OBJECT_ID('tempdb..#Entry') is not null BEGIN   DROP TABLE #Entry   END ------------------- ...

  8. 免费苹果账号(apple id)申请ios证书p12真机调试

    HBuilder可以直接打包越狱版的ipa包,但需要越狱手机才能安装,如果需要安装到没越狱的手机安装,需要自己申请ios证书打包. 一般是需要一个付费了的苹果开发者账号才能申请ios证书打包. 这里介 ...

  9. Airflow 使用随笔(内含 TimeZone 和 Backfill 等的详解)

    其实怎么部署  airflow 又哪些特性,然后功能又是如何全面都可以在 Reference 的文章里面找到,都不是重点这里就不赘述了. 这里重点谈一下我在部署完成仔细阅读文档之后觉得可以总结的一些东 ...

  10. html5 表單輸入類型

    輸入類型有:email,url,number,range,Date pickers(工作機制是什麼),search, 有相關類型的輸入域,會對域進行驗證. 不同的瀏覽器並不一定都支持所有的輸入類型.