1647: [Usaco2007 Open]Fliptile 翻格子游戏

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 423  Solved: 173
[Submit][Status][Discuss]

Description

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M x N grid (1 <= M <= 15; 1 <= N <= 15) of square tiles, each of which is colored black on one side and white on the other side. As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make. Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

 约翰知道,那些高智力又快乐的奶牛产奶量特别高.所以他做了一个翻瓦片的益智游戏来娱乐奶牛.在一个M×N(1≤M,N≤15)的骨架上,每一个格子里都有一个可以翻转的瓦片.瓦片的一面是黑色的,而另一面是白色的.对一个瓦片进行翻转,可以使黑变白,也可以使白变黑.然而,奶牛们的蹄子是如此的巨大而且笨拙,所以她们翻转一个瓦片的时候,与之有公共边的相邻瓦片也都被翻转了.那么,这些奶牛们最少需要多少次翻转,使所有的瓦片都变成白面向上呢?如杲可以做到,输出字典序最小的结果(将结果当成字符串处理).如果不能做到,输出“IMPOSSIBLE”.

Input

* Line 1: Two space-separated integers: M and N

* Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

    第1行输入M和N,之后M行N列,输入游戏开始时的瓦片状态.0表示白面向上,1表示黑面向上.

Output

* Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

    输出M行,每行N个用空格隔开的整数,表示对应的格子进行了多少次翻转.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

OUTPUT DETAILS:

After flipping at row 2 column 1, the board will look like:
0 0 0 1
1 0 1 0
1 1 1 0
1 0 0 1

After flipping at row 2 column 4, the board will look like:
0 0 0 0
1 0 0 1
1 1 1 1
1 0 0 1

After flipping at row 3 column 1, the board will look like:
0 0 0 0
0 0 0 1
0 0 1 1
0 0 0 1

After flipping at row 3 column 4, the board will look like:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Another solution might be:
0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0
but this solution is lexicographically higher than the solution above.

HINT

 

Source

Silver

题解:没记错的话,这个是当年囧神(囧神=JSZKC,省选前夕orz一下攒攒RP)出的NOIP模拟题里面的\(T_3\),当时的我只知道 \(O({2}^{NM})\) 的纯暴力枚举,但事实上不用这样——

其实还是枚举,但实际上只要 \(O({2}^{N} )\) 的枚举即可,看到 \(N\) ,显然就是枚举第一行啦,事实上第一行的决策将直接决定下一行的决策,然后下一行影响下一行,也就是说实际上第一行的决定决定了全局的决策,然后根据第一行二进制穷举出来的进行模拟,然后判断此方案是否可行,然后打擂台记录下来

有人可能会在比对过程中再弄个字典序比较,因为题目中说要字典序最小,但是还有一个细节你似乎忽略了——我们二进制穷举从小数字到大数字本身就符合字典序上升,对于一个第一行决策情况,最多只有一种合法解,所以完全不必比较,直接“先入为主”即可

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ var
i,j,k,l,m,n,ans:longint;
a,c,e,f:array[..,..] of longint;
b:array[..] of longint;
begin
readln(n,m);
for i:= to n do
begin
for j:= to m do read(a[i,j]);
readln;
end;
fillchar(b,sizeof(b),);ans:=maxlongint;
while b[]= do
begin
for i:= to m do c[,i]:=b[i];
for i:= to n do
for j:= to m do c[i,j]:=a[i,j];
fillchar(e,sizeof(e),);k:=;
for i:= to n do
begin
for j:= to m do
if c[i-,j]= then
begin
e[i,j]:=;inc(k);
c[i,j]:=-c[i,j];
c[i,j-]:=-c[i,j-];
c[i,j+]:=-c[i,j+];
c[i-,j]:=-c[i-,j];
c[i+,j]:=-c[i+,j];
end;
end;
l:=;
for i:= to m do inc(l,c[n,i]);
if l= then
begin
if k<ans then
begin
ans:=k;
for i:= to n do
for j:= to m do
f[i,j]:=e[i,j];
end;
end;
i:=m;
while b[i]= do
begin
b[i]:=;
dec(i);
end;
b[i]:=;
end;
if ans=maxlongint then
begin
writeln('IMPOSSIBLE');
halt;
end;
for i:= to n do
for j:= to m do
if j<m then write(f[i,j],' ') else writeln(f[i,j]);
readln;
end.

1647: [Usaco2007 Open]Fliptile 翻格子游戏的更多相关文章

  1. 【BZOJ】1647: [Usaco2007 Open]Fliptile 翻格子游戏(暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1647 自己太弱...看题解.. 竟然是枚举第一行的放法,,,因为一定要全部变0,所以将前一行1的在这 ...

  2. BZOJ 1647 [Usaco2007 Open]Fliptile 翻格子游戏:部分枚举 位运算

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1647 题意: 在一个n*m(1 <= n,m <= 15)的棋盘上,每一个格子 ...

  3. bzoj 1647: [Usaco2007 Open]Fliptile 翻格子游戏【dfs】

    这个可以用异或高斯消元,但是我不会呀我用的暴搜 2的m次方枚举第一行的翻转情况,然后后面的就定了,因为对于一个j位置,如果i-1的j位置需要翻,那么一定要翻i的j,因为这是i-1的j最后翻的机会 按字 ...

  4. [Usaco2007 Open]Fliptile 翻格子游戏

    [Usaco2007 Open]Fliptile 翻格子游戏 题目 Farmer John knows that an intellectually satisfied cow is a happy ...

  5. [Usaco2007 Open]Fliptile 翻格子游戏题解

    问题 B: [Usaco2007 Open]Fliptile 翻格子游戏 时间限制: 5 Sec  内存限制: 128 MB 题目描述 Farmer John knows that an intell ...

  6. 【BZOJ 1647】[Usaco2007 Open]Fliptile 翻格子游戏 模拟、搜索

    第一步我们发现对于每一个格子,我们只有翻和不翻两种状态,我们发现一旦确定了第一行操作,那么第二行的操作也就随之确定了,因为第一行操作之后我们要想得到答案就得把第一行全部为0,那么第二行的每一个格子的操 ...

  7. [Usaco2007 Open]Fliptile 翻格子游戏 状态压缩

    考试想到了状压,苦于T1废掉太长时间,于是默默输出impossible.. 我们知道,一个格子的翻转受其翻转次数和它相邻翻转次数的影响. 由每一个位置操作两次相当于把它翻过来又翻回去,所以答案中每一个 ...

  8. [Usaco2007 Open]Fliptile 翻格子游戏 状压dp

    n,m<=15,直接搞肯定不行,考虑一行一行来, 每一行的状态只与三行有关,所以从第一行开始枚举,每一次让下面一行填上他上面那行的坑 最后一行必须要同时满足他自己和他上面那行,否则舍去 #inc ...

  9. [BZOJ 1647][USACO 2007 Open] Fliptile 翻格子游戏

    1647: [Usaco2007 Open]Fliptile 翻格子游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 702  Solved: 281[ ...

随机推荐

  1. localToLocal坐标变换

    localToLocal坐标变换 $(function() { init(); }); // localtoLocal var stage, arm, handler; function init(e ...

  2. hadoop-1.x的运行实例

    我的环境是hadoop-0.20.2,eclipse:SDK-3.3.2, 源数据为: Apr 23 11:49:54 hostapd: wlan0: STA 14:7d:c5:9e:fb:84 Ap ...

  3. Java线程:线程交互

    一.基础知识 java.lang.Object的类的三个方法: void notify():唤醒在此对象监视器上等待的单个线程. void notifyAll():唤醒在此对象监视器上等待的所有线程. ...

  4. Java泛型类定义,与泛型方法的定义使用

    package com.srie.testjava; public class TestClassDefine<T, S extends T> { public static void m ...

  5. Bootstrap入门(十)组件4:按钮组与下拉菜单结合

    Bootstrap入门(十)组件4:按钮组与下拉菜单结合   先引入本地的CSS文件和JS文件(注:1.bootstrap是需要jQuery支持的.2.需要在<body>当中添加) < ...

  6. jmeter线程组配置

    线程组配置 线程组相当于有多个用户,同时去执行相同的一批次任务.每个线程之间都是隔离的,互不影响的.一个线程的执行过程中,操作的变量,不会影响其他线程的变量值. Delay Thread creati ...

  7. 基于Casperjs的网页抓取技术【抓取豆瓣信息网络爬虫实战示例】

    CasperJS is a navigation scripting & testing utility for the PhantomJS (WebKit) and SlimerJS (Ge ...

  8. vue.js环境搭建

    安装 nodejs 地址 :https://nodejs.org/en/ npm安装最新版本 更新npm :npm update -g 安装淘宝镜像 npm install -g cnpm --reg ...

  9. [css]《css揭秘》学习笔记(一)

    一.background-clip属性 <html> <head> <meta charset="utf-8"> <title>背景 ...

  10. 微端启动器LAUNCHER的制作之MFC版二(下载)

    用了C#再回来用C++写真的有一种我已经不属于这个世界的感觉.C++的下载就没有C#那么方便了,我用的是libcurl.dll,官网上下载的源码自己cmake出来编译的,c++的库引用有debug和r ...