POJ3090_Visible Lattice Points【欧拉函数】
Memory Limit: 65536K
Accepted: 3331
Description
A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2)
is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.
Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.
Input
The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.
Output
For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.
Sample Input
4
2
4
5
231
Sample Output
1 2 5
2 4 13
3 5 21
4 231 32549
Source
Greater New York 2006Visible Lattice Points
题目大意:如今有一个二维坐标系,仅仅有离散的整数坐标上有点。
如今站在N点向周围看去。问能看到多少个点。
假如看到了(2,1),那么(2,1)后边的(4,2)(6,3)…就被挡住
看不到了。
考虑1*1的时候,有三个点(1,0)(1,1)(0,1)。
(1,0)和(0,1)关于(1,1)对称
再看2*2的时候,有个点(1,0)(1,1)(2,1)(0,1)(1,2)
(1,0)和(0,1)关于(1,1)对称
(2,1)和(1,2)关于(1,1)对称
比1*1多了两个点。而且都是关于(1,1)对称,而(2,2)则被(1,1)遮挡住了
所以我们仅仅考虑下三角的情况。得出结果*2+1就是终于答案。
由于同斜率的点都被第一个点盖掉看不到了。所以我们仅仅考虑斜率有多少种就是得出结果了。
1*1的时候。斜率有0
2*2的时候,斜率有0,1/2
3*3的时候,斜率有0,1/2,1/3,2/3
4*4的时候,斜率有0,1/2(2/4),1/3,2/3,1/4,3/4;
5*5的时候,斜率有0,1/2(2/4),1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5
6*6的时候,斜率有0,1/2(2/4,3/6),1/3(2/6),2/3(4/6),1/4,3/4,1/5,2/5,3/5,4/5,1/6,5/6
能够看出,事实上就是求分母小于等于N的真分数有多少
那么就是单纯的欧拉函数了,这里用普通欧拉函数和高速求欧拉函数都能够
參考博文:http://blog.csdn.net/zhang20072844/article/details/8108727
#include<stdio.h> int prime[1010],phi[1001];
bool unprime[1010]; void Euler()//高速求欧拉函数
{
int i,j,k = 0; for(i = 2; i <= 1000; i++)
{
if(!unprime[i])
{
prime[k++] = i;
phi[i] = i-1;
} for(j = 0; j < k && i*prime[j] <= 1000; j++)
{
unprime[prime[j]*i] = true;
if(i % prime[j] != 0)
phi[prime[j]*i] = phi[i] * (prime[j]-1);
else
{
phi[prime[j]*i] = phi[i] * prime[j];
break;
}
}
}
}
int main()
{
int C,n;
Euler();
phi[1]=1;
scanf("%d",&C);
int kase = 1;
while(C--)
{
scanf("%d",&n);
int sum = 0;
for(int i = 1;i <= n; i++)
sum += phi[i];
printf("%d %d %d\n",kase++,n,2*sum+1);
}
return 0;
}
#include <stdio.h>
#include <math.h>
int Euler(int n)//普通求欧拉函数
{
int i,ret = n;
for(i = 2; i <= sqrt(1.0*n); i++)
{
if(n % i == 0)
{
ret = ret - ret/i;
}
while(n % i == 0)
n /= i;
}
if(n > 1)
ret = ret - ret/n;
return ret;
}
int main()
{ int C,n;
scanf("%d",&C);
int kase = 1;
while(C--)
{
scanf("%d",&n);
int sum = 0;
for(int i = 1;i <= n; i++)
sum += Euler(i);
printf("%d %d %d\n",kase++,n,2*sum+1);
}
}
POJ3090_Visible Lattice Points【欧拉函数】的更多相关文章
- POJ3090 Visible Lattice Points 欧拉函数
欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...
- POJ 3090 Visible Lattice Points 欧拉函数
链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...
- [poj 3090]Visible Lattice Point[欧拉函数]
找出N*N范围内可见格点的个数. 只考虑下半三角形区域,可以从可见格点的生成过程发现如下规律: 若横纵坐标c,r均从0开始标号,则 (c,r)为可见格点 <=>r与c互质 证明: 若r与c ...
- POJ3090 Visible Lattice Points 欧拉筛
题目大意:给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 线y=x和坐标轴上的点都被(1,0)(0,1)(1,1)挡住了.除这三个钉子外,如果一个点(x,y)不互质,则 ...
- 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points
Visible Lattice Points Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5636 Accepted: ...
- POJ_3090 Visible Lattice Points 【欧拉函数 + 递推】
一.题目 A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), ...
- zoj 2777 Visible Lattice Points(欧拉函数,基础)
题目 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> #include<algo ...
- POJ 3090 Visible Lattice Points 【欧拉函数】
<题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...
- POJ 3090 Visible Lattice Points | 其实是欧拉函数
题目: 给一个n,n的网格,点可以遮挡视线,问从0,0看能看到多少点 题解: 根据对称性,我们可以把网格按y=x为对称轴划分成两半,求一半的就可以了,可以想到的是应该每种斜率只能看到一个点 因为斜率表 ...
随机推荐
- poj3126解题报告
题意:简单的说就是:有一个人门牌号是一个四位数的整数,并且还是一个素数,现在他想要换成另外一个四位数且是素数的门牌号,而且,每次都只能更换这个四位数的一个位置的数 ,也就是每换一次都只改变一个数字,而 ...
- 《Linux设备驱动开发具体解释(第3版)》进展同步更新
本博实时更新<Linux设备驱动开发具体解释(第3版)>的最新进展. 2015.2.26 差点儿完毕初稿. 本书已经rebase到开发中的Linux 4.0内核,案例多数基于多核CORTE ...
- 《JavaScript设计模式与开发实践》读书笔记之策略模式
1.策略模式 定义一系列算法,把它们一个个封装起来,并且使它们可以相互替换 1.1 传统实现 根据工资基数和年底绩效来发送年终奖 var calculateBonus= function (perfo ...
- javascript UniqueID属性
在Web页中的每一个HTML元素都一个ID属性,ID作为其标示,在我们的普通理解中它应该是unique的.但是HTML元素的ID属性是可写的,这就造成了我们非常可能人为的使ID的反复.按么假设 ...
- What the difference between rebuild index and re-organize index?
avg_fragmentation_in_percent value Corrective statement > 5% and < = 30% ALTER INDEX REORGANIZ ...
- wordpress博客近期变慢之解决(fonts.google.com)
近期发现站点訪问速度变慢.博客文章打开速度特慢,也没改动过东西. 并且近期发现google的服务非常多訪问都打不开或是变慢. 于是知道可能是那"伟大东西"在作坏事了. 症状: 网页 ...
- hibernate之关于使用连接表实现多对一关联映射
[Hibernate]之关于使用连接表实现多对一关联映射 在我们项目使用中採用中间表最多的一般就是多对一,或者是多对多,当然一对一使用中间表也是能够的,可是这样的几率通常少之又少!所以这里重点介绍多对 ...
- Windows Phone开发(25):启动器与选择器之WebBrowserTask
原文:Windows Phone开发(25):启动器与选择器之WebBrowserTask 从名字上就看出来,这个家伙就是打开浏览并浏览到指定页面. 它有两个用途完全一样的属性:Uri属性是Syste ...
- Javadoc的Html文件传输chm
Javadoc的Html文件转chm 工具下载地址:http://msdn.microsoft.com/en-us/library/ms669985.aspx 两篇相关文章: MyEclipse ...
- GRUB2配置详解:默认启动项,超时时间,隐藏引导菜单,配置文件详解,图形化配置
配置文件详解: /etc/default/grub # 设定默认启动项,推荐使用数字 GRUB_DEFAULT=0 # 注释掉下面这行将会显示引导菜单 #GRUB_HIDDEN_TIMEOUT=0 # ...