[OpenCV] Samples 02: Mat - 图像矩阵
前言
一、简介
Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage。
相比之下Mat最大的好处就是能够更加方便的进行内存管理,不再需要程序员手动管理内存的释放。
opencv2.3中提到Mat是一个多维的密集数据数组,可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。
/* implement */
基本操作
操作Mat元素时:I.at<double>(1,1) = CV_PI;
本博客原内容
/*
*
* cvout_sample just demonstrates the serial out capabilities of cv::Mat
* That is, cv::Mat M(...); cout << M; Now works.
*
*/ #include "opencv2/core/core.hpp"
#include <iostream> using namespace std;
using namespace cv; static void help()
{
cout
<< "\n------------------------------------------------------------------\n"
<< " This program shows the serial out capabilities of cv::Mat\n"
<< "That is, cv::Mat M(...); cout << M; Now works.\n"
<< "Output can be formated to OpenCV, matlab, python, numpy, csv and \n"
<< "C styles Usage:\n"
<< "./cvout_sample\n"
<< "------------------------------------------------------------------\n\n"
<< endl;
} int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv, "{help h||}");
if (parser.has("help"))
{
help();
return ;
} /**************************************************************************/
// Jeff --> Define Diagnal Mat.
Mat I = Mat::eye(, , CV_64F);
I.at<double>(,) = CV_PI;
cout << "I = \n" << I << ";" << endl << endl; /*------------------------------------------------------------------------*/
Mat r = Mat(, , CV_8UC3);
randu(r, Scalar::all(), Scalar::all()); // Jeff --> Matrix Format transform.
cout << "r (default) = \n" << r << ";" << endl << endl;
cout << "r (matlab) = \n" << format(r, Formatter::FMT_MATLAB) << ";" << endl << endl;
cout << "r (python) = \n" << format(r, Formatter::FMT_PYTHON) << ";" << endl << endl;
cout << "r (numpy) = \n" << format(r, Formatter::FMT_NUMPY) << ";" << endl << endl;
cout << "r (csv) = \n" << format(r, Formatter::FMT_CSV) << ";" << endl << endl;
cout << "r (c) = \n" << format(r, Formatter::FMT_C) << ";" << endl << endl; /**************************************************************************/
Point2f p(, );
cout << "p = " << p << ";" << endl; /*------------------------------------------------------------------------*/
Point3f p3f(, , );
cout << "p3f = " << p3f << ";" << endl; /**************************************************************************/
// Jeff --> vector.
vector<float> v;
v.push_back(1.1);
v.push_back(2.2);
v.push_back(3.3); cout << "shortvec = " << Mat(v) << endl; /*------------------------------------------------------------------------*/
vector<Point2f> points();
for (size_t i = ; i < points.size(); ++i)
points[i] = Point2f((float)(i * ), (float)(i % )); cout << "points = " << points << ";" << endl;
return ;
}
Result: Matrix Format for不同的工具。
r (default) =
[ 91, 2, 79, 179, 52, 205, 236, 8, 181;
239, 26, 248, 207, 218, 45, 183, 158, 101;
102, 18, 118, 68, 210, 139, 198, 207, 211;
181, 162, 197, 191, 196, 40, 7, 243, 230;
45, 6, 48, 173, 242, 125, 175, 90, 63;
90, 22, 112, 221, 167, 224, 113, 208, 123;
214, 35, 229, 6, 143, 138, 98, 81, 118;
187, 167, 140, 218, 178, 23, 43, 133, 154;
150, 76, 101, 8, 38, 238, 84, 47, 7;
117, 246, 163, 237, 69, 129, 60, 101, 41]; r (matlab) =
(:, :, 1) =
91, 179, 236;
239, 207, 183;
102, 68, 198;
181, 191, 7;
45, 173, 175;
90, 221, 113;
214, 6, 98;
187, 218, 43;
150, 8, 84;
117, 237, 60
(:, :, 2) =
2, 52, 8;
26, 218, 158;
18, 210, 207;
162, 196, 243;
6, 242, 90;
22, 167, 208;
35, 143, 81;
167, 178, 133;
76, 38, 47;
246, 69, 101
(:, :, 3) =
79, 205, 181;
248, 45, 101;
118, 139, 211;
197, 40, 230;
48, 125, 63;
112, 224, 123;
229, 138, 118;
140, 23, 154;
101, 238, 7;
163, 129, 41; r (python) =
[[[ 91, 2, 79], [179, 52, 205], [236, 8, 181]],
[[239, 26, 248], [207, 218, 45], [183, 158, 101]],
[[102, 18, 118], [ 68, 210, 139], [198, 207, 211]],
[[181, 162, 197], [191, 196, 40], [ 7, 243, 230]],
[[ 45, 6, 48], [173, 242, 125], [175, 90, 63]],
[[ 90, 22, 112], [221, 167, 224], [113, 208, 123]],
[[214, 35, 229], [ 6, 143, 138], [ 98, 81, 118]],
[[187, 167, 140], [218, 178, 23], [ 43, 133, 154]],
[[150, 76, 101], [ 8, 38, 238], [ 84, 47, 7]],
[[117, 246, 163], [237, 69, 129], [ 60, 101, 41]]]; r (numpy) =
array([[[ 91, 2, 79], [179, 52, 205], [236, 8, 181]],
[[239, 26, 248], [207, 218, 45], [183, 158, 101]],
[[102, 18, 118], [ 68, 210, 139], [198, 207, 211]],
[[181, 162, 197], [191, 196, 40], [ 7, 243, 230]],
[[ 45, 6, 48], [173, 242, 125], [175, 90, 63]],
[[ 90, 22, 112], [221, 167, 224], [113, 208, 123]],
[[214, 35, 229], [ 6, 143, 138], [ 98, 81, 118]],
[[187, 167, 140], [218, 178, 23], [ 43, 133, 154]],
[[150, 76, 101], [ 8, 38, 238], [ 84, 47, 7]],
[[117, 246, 163], [237, 69, 129], [ 60, 101, 41]]], dtype='uint8'); r (csv) =
91, 2, 79, 179, 52, 205, 236, 8, 181
239, 26, 248, 207, 218, 45, 183, 158, 101
102, 18, 118, 68, 210, 139, 198, 207, 211
181, 162, 197, 191, 196, 40, 7, 243, 230
45, 6, 48, 173, 242, 125, 175, 90, 63
90, 22, 112, 221, 167, 224, 113, 208, 123
214, 35, 229, 6, 143, 138, 98, 81, 118
187, 167, 140, 218, 178, 23, 43, 133, 154
150, 76, 101, 8, 38, 238, 84, 47, 7
117, 246, 163, 237, 69, 129, 60, 101, 41
; r (c) =
{ 91, 2, 79, 179, 52, 205, 236, 8, 181,
239, 26, 248, 207, 218, 45, 183, 158, 101,
102, 18, 118, 68, 210, 139, 198, 207, 211,
181, 162, 197, 191, 196, 40, 7, 243, 230,
45, 6, 48, 173, 242, 125, 175, 90, 63,
90, 22, 112, 221, 167, 224, 113, 208, 123,
214, 35, 229, 6, 143, 138, 98, 81, 118,
187, 167, 140, 218, 178, 23, 43, 133, 154,
150, 76, 101, 8, 38, 238, 84, 47, 7,
117, 246, 163, 237, 69, 129, 60, 101, 41};
[OpenCV] Samples 02: Mat - 图像矩阵的更多相关文章
- [OpenCV] Samples 02: [ML] kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. #include "opencv2/highgui.hpp" #include "opencv2/cor ...
- 【视频开发】OpenCV中Mat,图像二维指针和CxImage类的转换
在做图像处理中,常用的函数接口有OpenCV中的Mat图像类,有时候需要直接用二维指针开辟内存直接存储图像数据,有时候需要用到CxImage类存储图像.本文主要是总结下这三类存储方式之间的图像数据的转 ...
- OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...
- 快速遍历OpenCV Mat图像数据的多种方法和性能分析 | opencv mat for loop
本文首发于个人博客https://kezunlin.me/post/61d55ab4/,欢迎阅读! opencv mat for loop Series Part 1: compile opencv ...
- 图片存进Mat类中,然后调用图像矩阵元素
Mat img = imread();//灰度图 imwrite("origin.png",img); if(img.empty()) { cout << " ...
- OpenCV 第二课 认识图像的存储结构
OpenCV 第二课 认识图像的存储结构 Mat Mat 类包含两部分,矩阵头和矩阵体.矩阵头包含矩阵的大小,存储方式和矩阵体存储空间的指针.因此,Mat中矩阵头的大小是固定的,矩阵体大小是不定的. ...
- 跟我一起学opencv 第二课之图像的掩膜操作
1.掩膜(mask)概念 用选定的图像,图形或物体,对处理的图像(全部或局部)进行遮挡,来控制图像处理的区域或处理过程.用于覆盖的特定图像或物体称为掩模或模板.光学图像处理中,掩模可以足胶片,滤光片等 ...
- OpenCV中对Mat里面depth,dims,channels,step,data,elemSize和数据地址计算的理解 (转)
cv::Matdepth/dims/channels/step/data/elemSizeThe class Mat represents an n-dimensional dense numeric ...
- 【编程开发】opencv实现对Mat中某一列或某一行的元素进行normalization
[编程开发]opencv实现对Mat中某一列或某一行的元素进行normalization 标签: [编程开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259 ...
随机推荐
- Tomcat性能优化(二) ExpiresFilter设置浏览器缓存
Tomcat性能调优 通过ExpiresFilter设置资源缓存 [官方文档] http://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#E ...
- hive表增量抽取到oracle数据库的通用程序(二)
hive表增量抽取到oracle数据库的通用程序(一) 前一篇介绍了java程序的如何编写.使用以及引用到的依赖包.这篇接着上一篇来介绍如何在oozie中使用该java程序. 在我的业务中,分为两段: ...
- EF5.x Code First 一对多关联条件查询,Contains,Any,All
背景 通过多个部门id获取所有用户,部门和用户是多对多. 已知部门id,获取该部门包括该部门下的所有子部门的所有用户. 关系如下: public class Entity:IEntity { publ ...
- Centos7.3防火墙配置
1.查看firewall服务状态 systemctl status firewalld 2.查看firewall的状态 firewall-cmd --state 3.开启.重启.关闭.firewall ...
- kindle书摘-围城-相爱勿相伤
https://github.com/starrtc/android-demo 围城(爱熄灭了灯,心围一座城.出版七十周年纪念版) (钱钟书) - 您在位置 #49-49的标注 | 添加于 2018年 ...
- Matlab函数——std,std2与mean,mean2区别
最近看代码,经常看到std,std2的用法,由于刚刚学习,网上搜索了下,没有找到解答,看了help,s = std(X,flag)s = std(X,flag,dim) ,只告诉我们 flag,di ...
- Navi.Soft31.代码生成器(含下载地址)
1系统简介 1.1功能简述 在Net软件开发过程中,大部分时间都是在编写代码,并且都是重复和冗杂的代码.比如:要实现在数据库中10个表的增删改查功能,大部分代码都是相同的,只需修改10%的代码量.此时 ...
- 解决Android 7.0 App内切换语言不生效的问题
Android7.0及以前版本,Configuration中的语言相当于是App的全局设置: public static void changeAppLanguage(Context context, ...
- QTcpSocket使用过程中的一些问题记录
目前,在将原来C的socket通讯改为使用Qt类库QTcpSocket通讯,在修改过程中遇到不少问题,在此将问题一并记录,以备后面使用. 采用的通讯方式:QTimer定时器.QThread多线程和QT ...
- android 系统广播
Version:0.9 StartHTML:-1 EndHTML:-1 StartFragment:00000099 EndFragment:00012731 String ADD_SHORTCUT_ ...