hdu1081 DP类最大子段和(二维压缩+前缀和数组/树状数组计数)
题意:给出一个 n * n 的数字矩阵,问最大子矩阵和是多少。
由于和最长子段和问题类似,一开始想到的就是 DP ,一开始我准备用两个循环进行 DP ,对于每一个 (i,j) ,考察(i - 1,j)与(i,j - 1), dp 值代表以该点为右下角的最大矩阵和,同时记录下这个矩阵的左上角坐标,状态转移时通过将原和最大矩阵通过补边推到当前和最大矩阵。但是其实这种做法有一个明显的问题,就是转移时,补上边后 dp 值相同怎么办,dp 值相同而矩阵不同的话会影响到下一次状态转移后补上的矩阵的情况,从而影响到下一个矩阵的判断。
并想不出怎么做的我无奈看了题解……二维压缩,好吧,并不懂那是个什么……细看之下才知道,其实就是用数组记录下矩阵后,在 dp 时对于起始结束行不同的矩阵分别 DP ,记录下其中最大值即可。例如对于所有列,考虑其前两行的情况,即子矩阵行数为 2 ,这时每列的两个数可以计算其和为一个数,就能将二维的矩阵转化为一维的数组了,这样再进行与最长子段和相同的操作就能得出答案了。
当然,记录矩阵并且便于计算行之间的和,我用了前缀和数组和树状数组两种方式。这题明显用前缀和数组更加好,因为输入的数不会发生改变,所以前缀和数组更加容易计算,用树状数组做并不是用来体现我的逼格高,只是因为我个人树状数组基本没有在题目中用过几次,所以这次敲一遍训练一下,以免以后遇到了明明会但是敲不出来或者敲得太慢……说白了就是弱……
前缀和数组:
#include<stdio.h>
#include<string.h>
#define max(a,b) a>b?a:b int t[][],dp[]; int main(){
int n;
while(scanf("%d",&n)!=EOF&&n!=){
int i,j,k,ans=-0xFFFFFFF,tmp;
memset(t,,sizeof(t));
for(i=;i<=n;i++){
for(j=;j<=n;j++){
scanf("%d",&tmp);
t[j][i]=t[j][i-]+tmp;
}
}
for(i=;i<=n-;i++){
for(j=i+;j<=n;j++){
memset(dp,,sizeof(dp));
for(k=;k<=n;k++){
if(dp[k-]>){
dp[k]=dp[k-]+(t[k][j]-t[k][i]);
}
else dp[k]=t[k][j]-t[k][i];
ans=max(ans,dp[k]);
}
}
}
printf("%d\n",ans);
}
return ;
}
树状数组:
#include<stdio.h>
#include<string.h>
#define max(a,b) a>b?a:b int t[][],dp[],n; void add(int i,int j,int d){
while(j<=n){
t[i][j]+=d;
j+=(j&-j);
}
return;
} int sum(int k,int x){
int cnt=;
while(x>){
cnt+=t[k][x];
x-=(x&(-x));
}
return cnt;
} int main(){
while(scanf("%d",&n)!=EOF&&n!=){
int i,j,k,ans=-0xFFFFFFF,tmp;
memset(t,,sizeof(t));
for(i=;i<=n;i++){
for(j=;j<=n;j++){
scanf("%d",&tmp);
add(i,j,tmp);
}
}
for(i=;i<=n-;i++){
for(j=i+;j<=n;j++){
memset(dp,,sizeof(dp));
for(k=;k<=n;k++){
tmp=sum(k,j)-sum(k,i);
if(dp[k-]>){
dp[k]=dp[k-]+tmp;
}
else dp[k]=tmp;
ans=max(ans,dp[k]);
}
}
}
printf("%d\n",ans);
}
return ;
}
hdu1081 DP类最大子段和(二维压缩+前缀和数组/树状数组计数)的更多相关文章
- Codeforces Good Bye 2015 D. New Year and Ancient Prophecy 后缀数组 树状数组 dp
D. New Year and Ancient Prophecy 题目连接: http://www.codeforces.com/contest/611/problem/C Description L ...
- BZOJ3132 上帝造题的七分钟 【二维树状数组】
题目 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的 ...
- 二维偏序+树状数组【P3431】[POI2005]AUT-The Bus
Description Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个 ...
- 树状数组+二维前缀和(A.The beautiful values of the palace)--The Preliminary Contest for ICPC Asia Nanjing 2019
题意: 给你螺旋型的矩阵,告诉你那几个点有值,问你某一个矩阵区间的和是多少. 思路: 以后记住:二维前缀和sort+树状数组就行了!!!. #define IOS ios_base::sync_wit ...
- 树状数组优化DP 【模拟赛】删区间
哇,难受得一匹. 看到题的一瞬间竟然只想到了\(n^3\)的区间\(DP\) 一.\(40pts\) 设\(f[i][j]\)代表删去\(i\)到\(j\)这一段区间的最小代价和. 然后直接写普通的区 ...
- 第十四个目标(dp + 树状数组 + 线段树)
Problem 2236 第十四个目标 Accept: 17 Submit: 35 Time Limit: 1000 mSec Memory Limit : 32768 KB Probl ...
- URAL1523(dp+树状数组)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=41224#problem/B 分析:可以设dp[i][j]表示以i结尾长度为j的 ...
- hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)
Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...
随机推荐
- freemarker中对null值问题的处理
1. freemarker不支持null. 如果值为null会报错. 2.当值为null的处理 1)过滤不显示 Hello ${name!} 在属性后面加感叹号即可过滤null和空字符串 if和”?? ...
- java服务突然被挂掉,停止服务处理方案
一.问题背景 该问题出现在我们测试环境.测试环境部署了很多java应用. 其中一个数据服务(主要提供订单交易数据聚合查询),用着用着就服务挂掉了也就是进程没有了. 二.分析过程 1.了解服务器配置 ...
- LeetCode--112--路径总和
问题描述: 给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 s ...
- JavaScript--Array; Array.prototype
Array: Javascritp中Array的方法: findIndex()方法返回数组中满足提供的测试函数的第一个元素的索引.否则返回-1. find() 方法返回数组中满足提供的测试函数的第一个 ...
- android--------自定义Dialog之信息提示
对话框对于应用也是必不可少的一个组件,在Android中也不例外,对话框对于一些提示重要信息,或者一些需要用户额外交互的一些内容很有帮助. 自定义Dialog步骤: 1.主要创建Java类,并继承Di ...
- synchronized同步代码块锁释放
今天发现自己写的线上程序出现数据库不能同步的问题,查看日志已经停止记录,随后使用jstack查看线程的运行状况,发现有个同步线程锁住了. 以下是jstack -l 637 问题线程的内容. &quo ...
- 『Sklearn』特征向量化处理
『Kaggle』分类任务_决策树&集成模型&DataFrame向量化操作 1 2 3 4 5 6 7 8 9 '''特征提取器''' from sklearn.feature_extr ...
- bzoj2286: [Sdoi2011]消耗战 虚树
在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个 ...
- Spring Boot的SpringApplication类详解
相信使用过Spring Boot的开发人员,都对Spring Boot的核心模块中提供的SpringApplication类不陌生.SpringApplication类的run()方法往往在Sprin ...
- POJ 1128 拓扑排序 + 深搜
/* (⊙v⊙)嗯 貌似是一个建图 拓扑+深搜的过程.至于为什么要深搜嘛..一个月前敲得题现在全部推了重敲,于是明白了.因为题意要求如果有多个可能的解的话. * 就要输出字典序最小的那个.所以可以对2 ...