RNN总结
RNN既可以表述为循环神 经网络(recurrent neural network),也可以表述为递归神经网络(recursive neural network),前者一般用于处理以时间序列为输入的问题(比如把一个句子看成词组成的序列),每次向循环神经网络输入一个词,知道整个句子输入结束。后者一般用于处理图结构或树结构问题(比如为了处理歧义问题,我们构造语法树为输入,而不是循环输入每一个词)。
下图是循环神经网络的展开
图1
下面是一个句子对上图的应用
图2
可以这样理解:将所有用到的英文词向量化之后,the表示为(0.4,0.3),对应图1中的x输入,经过神经元计算之后输出为(1,3.5),神经元内部的计算方式为:
函数f通常是诸如tanh或者ReLU的非线性函数,U,x,St-1都为向量且U、V、W都是待训练参数。输出O可以选择softmax函数,其表达式如下
这里的变量i对应图1中的变量t,可见
也就是说循环神经网络所有输出之和为1,输出O的计算公式为
其中V和St都是向量。也就是说神经元先计算隐状态St,然后计算输出Ot
下面以树结构为例来说明递归神经网络的输入与计算
1.将句子分词之后,给每个词一个向量,这里词的向量化可以采用one-hot或者其他一些向量化工具,比如Google的gensim
2.将词按照树形结构输入,以图3为例
图3
2.1 首先计算“两个”和“外语学院”的父节点的向量,计算方法是:假设“两个”的词向量表示为c1,“外语学院”的词向量表示为c2,那么父节点对应的向量P为
其中W和b是训练好的参数,tanh是双曲正切函数,表达式为
2.2 依次迭代计算各个父节点对应的向量,最终得到根节点对应向量。
因为是以语法树输入的,所以对于歧义问题有较好的处理能力,比如图3中的句子也可以用图4的语法树来表示:
图4
事实上,图3与图4对应的根节点向量完全不同,因为词向量的输入顺序是不一样的。
在得到根节点向量后,我们就可以去完成一些更高级的任务,比如计算语义相似度或者情感分析等。
RNN总结的更多相关文章
- RNN求解过程推导与实现
RNN求解过程推导与实现 RNN LSTM BPTT matlab code opencv code BPTT,Back Propagation Through Time. 首先来看看怎么处理RNN. ...
- 在RNN中使用Dropout
dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上. LSTM的长期记 ...
- RNN 入门学习资料整理
建议按序阅读 1. RNN的一些简单概念介绍 A guide to recurrent neural networks and backpropagation Deep learning:四十九(RN ...
- lecture7-序列模型及递归神经网络RNN
Hinton 第七课 .这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是 ...
- RNN 入门教程 Part 4 – 实现 RNN-LSTM 和 GRU 模型
转载 - Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano ...
- RNN 入门教程 Part 3 – 介绍 BPTT 算法和梯度消失问题
转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradien ...
- RNN 入门教程 Part 2 – 使用 numpy 和 theano 分别实现RNN模型
转载 - Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano 本 ...
- RNN 入门教程 Part 1 – RNN 简介
转载 - Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs Recurrent Neural Networks (RN ...
- CNN & RNN 及一些常识知识(不断扩充中)
参考: http://blog.csdn.net/iamrichardwhite/article/details/51089199 一.神经网络的发展历史 五六十年代,提出感知机 八十年代,提出多层感 ...
- 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)
循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...
随机推荐
- parser_url
$url="http://127.0.0.1/test2.php?sitename=mysite.cn&a=1&b=2";$a=parse_url($url);p( ...
- pygame精灵类实现房子爆炸效果
# coding=utf8 import random import pygame from pygame.locals import * from cStringIO import StringIO ...
- Vue 之axios获取Http响应头
服务器端:Access-Control-Expose-Headers : 'Authorization' 客户端:res.headers.Authorization 引用链接:https://segm ...
- linux makefile (English)
############################################################################## Generic Makefile for ...
- Complete the Word
ZS the Coder loves to read the dictionary. He thinks that a word is nice if there exists a substring ...
- hdu1080 DP(类最长公共子序列)
题意,有两个字符串,分别由四个字母构成,字母之间有不同的相似度,允许在两个字符串都按原顺序排列的情况下进行字母与字母之间的匹配,也可以让字母与空格匹配,即相当于在字符串中间加空格来一一匹配,每个字母与 ...
- PHP 设计模式系列 —— 资源库模式(Repository)
1.模式定义 Repository 是一个独立的层,介于领域层与数据映射层(数据访问层)之间.它的存在让领域层感觉不到数据访问层的存在,它提供一个类似集合的接口提供给领域层进行领域对象的访问.Repo ...
- Java调用.NET webservice方法的几种方式
最近做项目,涉及到web-service调用,现学了一个星期,现简单的做一个小结.下面实现的是对传喜物流系统(http://vip.cxcod.com/PodApi/GetPodStr.asmx?ws ...
- EasyPHP-Devserver-17的坑位
mysql登陆错误:error: 'Plugin '*2A8AF30E682613A2F1CE1E28BA11D8560B294DCE' is not loaded' http://stackover ...
- jquery ajax 上传文件
html:<!-- /.tab-pane --> <div class="tab-pane" id="head_portrait"> & ...