K条最短路径算法(KSP, k-shortest pathes):Yen's Algorithm
参考:
K条最短路径算法:Yen's Algorithm
算法背景
K 最短路径问题是最短路径问题的扩展和变形。1959 年,霍夫曼(Hoffman) 和帕夫雷(Pavley)在论文中第一次提出k 最短路径问题。 k 最短路径问题通常包括两类:有限制的k 最短路问题和无限制的K 最短路问题。 前者要求最短路径集合不含有回路,而后者对所求得的最短路径集合无限制。
算法简介
Yen's算法是Yen 在1971 年提出的以其名字命名 的Yen 算法。Yen's算法采用了递推法中的偏离路径算法思想,适用于非负权边的有向无环图结构。
算法思想
算法可分为两部分,算出第1条最短路径P(1),然后在此基础上依次依次算出其他的K-1条最短路径。在求P(i+1) 时,将P(i)上除了终止节点外的所有节点都视为偏离节点,并计算每个偏离节点到终止节点的最短路径,再与之前的P(i)上起始节点到偏离节点的路径拼接,构成候选路径,进而求得最短偏离路径。
算法实例:

根据个人的理解,我归纳出了以下步骤:
调用K条最短路径算法,源C,目的H,K为3。B为偏离路径集合。
1.通过Dijkstra算法计算得到最短路径A^1:C-E-F-H,其中,花费为5,A[1] = C-E-F-H;
2.将A[1]作为迭代路径,进行第一次迭代:
(1)以部分迭代路径(即A[1])C路径中,C点为起点,将C-E路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^2-1:C-D-F-H,花费为8,将A^2-1路径加入B;
(2)以部分迭代路径(即A[1])C-E路径中,E为起点,将E-F路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^2-2:C-E-G-H,花费为7,将A^2-2路径加入B;
(3)以部分迭代路径(即A[1])C-E-F路径中,F为起点,将F-H路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^2-3:C-E-F-G-H,花费为8,将A^2-3路径加入B;
迭代完成,B集合中有三条路径:C-D-F-H,C-E-G-H,C-E-F-G-H;选出花费最小的偏离路径C-E-G-H,A[2] = C-E-G-H,移出B集合。
3.将A[2]作为迭代路径,进行第二次迭代:
(1)以部分迭代路径(即A[2])C路径中,C点为起点,将C-E路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^3-1:C-D-F-H,但B集合已存在该路径,故不存在偏移路径;
(2)以部分迭代路径(即A[2])C-E路径中,E点为起点,将E-G、E-F路径之间的权值设为无穷大 (注意,这里设置两条路径的权值原因是这两条路径分别存在于A[1]和A[2]中),进行一次Dijkstra,得到路径A^3-2:C-E-D-F-H,花费为8,将A^3-2加入B;
(3)以部分迭代路径(即A[2])C-E-G路径中,G点为起点,将C-H路径之间的权值设为无穷大,不存在偏移路径。
迭代完成,B集合中有三条路径:C-D-F-H,C-E-F-G-H,C-E-D-F-H;由于三条路径花费均为8,则根据最小节点数进行判断,选出偏离路径C-D-F-H,A[3] = C-D-F-H。
此时,选出了三条最短路径,分别是:
A[1] = C-E-F-H
A[2] = C-E-G-H
A[3] = C-D-F-H
算法结束。以上过程均为个人理解,如果出现了偏差,请大家指出,谢谢!
算法实现
可以参考Github中的一个使用python实现KSP算法的repo:Yen's K-Shortest Path Algorithm
2017.8
K条最短路径算法(KSP, k-shortest pathes):Yen's Algorithm的更多相关文章
- 算法基础~链表~排序链表的合并(k条)
算法基础~链表~排序链表的合并(k条) 1,题意:已知k个已排序链表头结点指针,将这k个链表合并,合并后仍然为有序的,返回合并后的头结点. 2,方法之间时间复杂度的比较: 方法1(借助工具vector ...
- POJ 2449 Remmarguts' Date (K短路 A*算法)
题目链接 Description "Good man never makes girls wait or breaks an appointment!" said the mand ...
- JAVA之单源最短路径(Single Source Shortest Path,SSSP问题)dijkstra算法求解
题目简介:给定一个带权有向图,再给定图中一个顶点(源点),求该点到其他所有点的最短距离,称为单源最短路径问题. 如下图,求点1到其他各点的最短距离 准备工作:以下为该题所需要用到的数据 int N; ...
- A*算法——第K短路
例题 JZOJ senior 1163第K短路 题目描述 Bessie 来到一个小农场,有时她想回老家看看她的一位好友.她不想太早地回到老家,因为她喜欢途中的美丽风景.她决定选择K短路径,而不是最短路 ...
- bellman-ford算法求K短路O(n*m),以及判负环O(n*m)
#include<iostream> #include<algorithm> #include<cstring> using namespace std; cons ...
- poj2449 (第k条最短路)
题意:求n个点中,a到b的第k条最短路 思路: 用最短路求出估价函数的h,再在搜索过程中记录g,利用A*求出 最开始想到的便是A*和最短路,但是脑子抽了,居然一个一个去求- -,TL了后才发现可以倒着 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- 【POJ】2449.Remmarguts' Date(K短路 n log n + k log k + m算法,非A*,论文算法)
题解 (搬运一个原来博客的论文题) 抱着板题的心情去,结果有大坑 就是S == T的时候也一定要走,++K 我发现按照论文写得\(O(n \log n + m + k \ log k)\)算法没有玄学 ...
- POJ 2449 Remmarguts' Date ( 第 k 短路 && A*算法 )
题意 : 给出一个有向图.求起点 s 到终点 t 的第 k 短路.不存在则输出 -1 #include<stdio.h> #include<string.h> #include ...
随机推荐
- mac版 android studio问题解决
1.mac安装android studio 解决方案:如果你是安装新手,可以下载androud studio boundls 和 安装环境的jdk就可以了,不需要单独在配置环境了,如果你有经验,可以单 ...
- host文件常用地址
#+UPDATE_TIME 2016-02-16 19:52:05 UTC+8#+MESSAGE#################################################### ...
- C#静态类,静态构造函数,静态变量
静态变量位于栈上,它是一个全局变量,在编译期就已经生成. public class Cow public static int count; private int id; { id = ++coun ...
- ubuntu 下执行定时任务
Window shell文件在linux系统下执行不了的解决办法 一些人喜欢用vim来写linux shell script, 但是, 有的人喜欢在Windows下用一些方便的编辑器(比如鼎鼎大名的N ...
- 非受限联合体 - 现代C++新特性总结
非受限联合体 非受限联合体:C++98中并不是所有数据类型都能够成为union的数据成员,不允许联合体拥有非POD(Plain Old Data).静态或引用类型的成员. C++11中取消了联合体对于 ...
- (转)Kangle配置文件
kangle配置文件 (重定向自Kangle配置文件) 目录 [隐藏] 1配置文件介绍 2重新加载配置文件 3config 3.1request和response(配置访问控制) 3.2listen( ...
- 人活着系列之开会(Floy)
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2930 题意:所有点到Z点的最短距离.因为岛名由 ...
- 7.10 Models -- Handling Metadata(处理元数据)
1. 随着从store中返回的records,你可能需要处理一些元数据.Metadata是伴随着特定model或者type的一种数据,而不是record. 2. 分页是使用元数据的一个常见的例子.想象 ...
- .NET 和 .NET框架概览
什么是.NET .NET是为简化在第三代因特网的分布式环境下的应用程序的开发,基于开放互联网标准和协议之上,实现异质语言和平台高度交互性而构建的新一代计算和通信平台.其主要由三部分构成:.NET框架. ...
- Linux命令: 结束命令
1)ctrl+c,退出命令 2)q,退出文件