CART模型 :即Classification And Regression Trees。它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法。如果因变量是连续数据,相对应的分析称为回归树,如果因变量是分类数据,则相应的分析称为分类树。决策树是一种倒立的树结构,它由内部节点、叶子节点和边组成。其中最上面的一个节点叫根节点。 构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述。构造决策树的目的是找出属性和类别间的关系,一旦这种关系找出,就能用它来预测将来未知类别的记录的类别。这种具有预测功能的系统叫决策树分类器。

CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,因此CART算法生成的决策树是结构简洁的二叉树。由于CART算法构成的是一个二叉树,它在每一步的决策时只能 是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。在CART算法中主要分为两个步骤

  • 将样本递归划分进行建树过程
  • 用验证数据进行剪枝

在R包中,有如下的算法包可完成CART 分类计算,如下,分别以鸢尾花数据集为例进行验证

  •  rpart::rpart
  •  tree::tree

rpart::rpart


  • rpart包中有针对CART决策树算法提供的函数,比如rpart函数,以及用于剪枝的prune函数
  • rpart函数的基本形式:rpart(formula,data,subset,na.action=na.rpart,method.parms,control,...)
  • 安装所需R包
    install.packages("mboost")
    install.packages("rpart")
    install.packages("maptree")
  • 数据集划分训练集和测试,比例是2:1
    set.seed(1234)
    index <-sample(1:nrow(iris),100)
    iris.train <-iris[index,]
    iris.test <-iris[-index,]
  • 构建CART模型,查看模型结构,在结构中能看到很多有意思的内容

    library(rpart)
    model.CART <-rpart(Species~.,data=iris.train)
    str(model.CART)
  • control:对树进行一些设置

    1. minsplit是最小分支节点数,这里指大于等于20,那么该节点会继续分划下去,否则停止
    2. minbucket:树中叶节点包含的最小样本数
    3. maxdepth:决策树最大深度
    4. xval:交叉验证的次数
    5. cp (complexity parameter),指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度。(即是每次分割对应的复杂度系数)
  • variable.importance:变量的重要性

    > model.CART$variable.importance
    Petal.Width Petal.Length Sepal.Length Sepal.Width
    60.58917 56.38914 39.79006 26.00328
  • 预测数据: vector: 预测数值   class: 预测类别  prob: 预测类别的概率
    > p.rpart <- predict(model.CART, iris.test,type="class")
    > table(p.rpart,iris.test$Species) p.rpart setosa versicolor virginica
    1 12 0 0
    2 0 21 3
    3 0 0 14
  • 可视化,需要rpart.plot包
#可视化决策树
#install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(model.CART)
  • 效果如下图:
  • CART剪枝:
    1. prune函数可以实现最小代价复杂度剪枝法,对于CART的结果,每个节点均输出一个对应的cp
    2. prune函数通过设置cp参数来对决策树进行修剪,cp为复杂度系数
    3. 可以用下面的办法选择具有最小xerror的cp的办法:
      model.CART.pru<-prune(model.CART, cp= model.CART$cptable[which.min(model.CART$cptable[,"xerror"]),"CP"])
      model.CART.pru$cp
  • CART剪枝后的模型进行预测

    p.rpart1<-predict(model.CART.pru,iris.test,type="class")
    table(p.rpart1,iris.test$Species)

tree::tree


  • 数据集划分训练集和测试见上节
  • 构建模型,查看生成模型结构,如下图,错误率为:0.02667
    > #install.packages("tree")
    > library(tree)
    > ir.tr <- tree(Species~., iris)
    > summary(ir.tr) Classification tree:
    tree(formula = Species ~ ., data = iris)
    Variables actually used in tree construction:
    [1] "Petal.Length" "Petal.Width" "Sepal.Length"
    Number of terminal nodes: 6
    Residual mean deviance: 0.1253 = 18.05 / 144
    Misclassification error rate: 0.02667 = 4 / 150
  • 查看生成决策树及图例
    plot(ir.tr)
    text(ir.tr,pretty = 0)
  • 结果验证
    > tree_predict <- predict(ir.tr,iris.test,type="class")
    > table(tree_predict,iris.test$Species) tree_predict setosa versicolor virginica
    setosa 12 0 0
    versicolor 0 20 1
    virginica 0 1 16
  • 用误分类率来剪枝,做交叉验证,代码如下:
    > cv.carseats=cv.tree(ir.tr, FUN=prune.misclass)
    > str(cv.carseats)
    List of 4
    $ size : int [1:5] 6 4 3 2 1
    $ dev : num [1:5] 11 11 10 96 121
    $ k : num [1:5] -Inf 0 2 44 50
    $ method: chr "misclass"
    - attr(*, "class")= chr [1:2] "prune" "tree.sequence"
  • 可视化模型

    par(mfrow=c(1, 2))
    plot(cv.carseats$size, cv.carseats$dev, type="b")
    plot(cv.carseats$k, cv.carseats$dev, type="b")
  • 图表示例

  • 随着树的节点越来越多(树越来越复杂),deviance逐渐减小,然后又开始增大
  • 随着对模型复杂程度的惩罚越来越重(k越来越大),deviance逐渐减小,然后又开始增大 (此图暂看不起来)
  • 从左边的图可以看出,当树的节点个数为 3 时,deviance达到最小,画出3个叶子节点的树
    #画出3个叶子节点的树
    par(new = TRUE)
    prune.carseats <- prune.misclass(ir.tr, best=3)
    plot(prune.carseats)
    text(prune.carseats, pretty=0)
  • 图示例
  • 测试及结果
    > tree.pred  <- predict(prune.carseats, iris.test, type="class")
    > summary(tree.pred)
    setosa versicolor virginica
    12 24 14
    > table(tree.pred,iris.test$Species) tree.pred setosa versicolor virginica
    setosa 12 0 0
    versicolor 0 21 3
    virginica 0 0 14

ML(4.2): R CART的更多相关文章

  1. ML: 聚类算法R包-对比

    测试验证环境 数据: 7w+ 条,数据结构如下图: > head(car.train) DV DC RV RC SOC HV LV HT LT Type TypeName 1 379 85.09 ...

  2. ML(4.3): R Random Forest

    随机森林模型是一种数据挖掘模型,常用于进行分类预测.随机森林模型包含多个树形分类器,预测结果由多个分类器投票得出. 决策树相当于一个大师,通过自己在数据集中学到的知识对于新的数据进行分类.俗话说得好, ...

  3. ML: 聚类算法R包-模糊聚类

    1965年美国加州大学柏克莱分校的扎德教授第一次提出了'集合'的概念.经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面.为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析.用模 ...

  4. ML: 聚类算法R包 - 模型聚类

    模型聚类 mclust::Mclust RWeka::Cobweb mclust::Mclust EM算法也称为期望最大化算法,在是使用该算法聚类时,将数据集看作一个有隐形变量的概率模型,并实现模型最 ...

  5. ML: 聚类算法R包-网格聚类

    网格聚类算法 optpart::clique optpart::clique CLIQUE(Clustering In QUEst)是一种简单的基于网格的聚类方法,用于发现子空间中基于密度的簇.CLI ...

  6. ML: 聚类算法R包-层次聚类

    层次聚类 stats::hclust stats::dist    R使用dist()函数来计算距离,Usage: dist(x, method = "euclidean", di ...

  7. ML: 聚类算法R包-K中心点聚类

    K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值, ...

  8. ML(4.1): R C4.5

    决策树模型中最为流行的是C4.5算法,  该类算法70年代末,J Ross Quinlan提出ID3算法,此算法的目的在于减少树的深度.但是忽略了叶子数目的研究.1993年,Quinlan本人以ID3 ...

  9. ML: 聚类算法R包 - 密度聚类

    密度聚类 fpc::dbscan fpc::dbscan DBSCAN核心思想:如果一个点,在距它Eps的范围内有不少于MinPts个点,则该点就是核心点.核心和它Eps范围内的邻居形成一个簇.在一个 ...

随机推荐

  1. elasticsearch term match multi_match区别

    转自:http://www.cnblogs.com/yjf512/p/4897294.html match 最简单的一个match例子: 查询和"我的宝马多少马力"这个查询语句匹配 ...

  2. 小程序animation动画效果(小程序组件案例)

    WXML <view class="container"> <view class="page-body"> <view clas ...

  3. POJ 2566 Bound Found 尺取 难度:1

    Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 1651   Accepted: 544   Spec ...

  4. poj3481

    题解: splay操作 读入速度太慢,导致超时... 用字符串gets操作 代码: #pragma GCC optimize(2) #include<cstdio> #include< ...

  5. 读书笔记 C# 控制台应用程序之Main方法浅析

    Main方法是C#控制台应用程序和Windows窗体应用程序的入口点.Main方法可以有形参,也可以没有,可以有返回值(int整型),也可以没有.如下定义: 无返回值.无形参的格式: static v ...

  6. 全球信息安全会议 Top 50

    信息安全会议在世界范围内举办,下面是全球最值得参加的50个信息安全会议的简介,以时间顺序列出.需要注意的是,这份清单基于2016年的信息撰写,因为具体日期与地点每年或有不同,请至活动官网确认具体的日期 ...

  7. 关于CentOS 7 下的Oracle11g的proc编译器的一些常见问题

    1.proc编译器配置问题 在使用proc将.pc文件编译成.c文件时出现一堆的错误,网上的答案七杂八杂的,都没有解决我的问题. 如下是我在使用过程中的一些错误: 由于我可能比较笨,实在是受不了网上那 ...

  8. L1-022 奇偶分家

    给定N个正整数,请统计奇数和偶数各有多少个? 输入格式: 输入第一行给出一个正整N(≤1000):第2行给出N个正整数,以空格分隔. 输出格式: 在一行中先后输出奇数的个数.偶数的个数.中间以1个空格 ...

  9. 【DevExpress v17.2新功能预告】改进DevExtreme编辑器

    DevExpress即将发布v17.2版本,在DevExtreme v17.2中,DevExtreme编辑器进行了一些改进. 除了dxScheduler,dxDataGrid,dxTreeList和d ...

  10. rocketmq集群安装,配置,测试

    完整的安装包及demo请到百度云盘下载: 1.上传安装包 2.解压安装包 创建目录rocketmq mkdir -p /apps/install/rocketmq 解压到目录rocketmq tar ...