已知$z_1=2\sqrt{3}i,z_2=3,z_3=-3,|z_3-z_4|=2\sqrt{3},$则$|z_1-z_4|+|z_2-z_4|$的最小值为_____

提示:费马点最小,取$Z_4(0,\sqrt{3})$为$\Delta Z_1Z_2Z_3$的费马点. 此时$|z_3-z_4|=2\sqrt{3}$
故$|z_1-z_4|+|z_2-z_4|\ge3\sqrt{3}$
注:只有这些很对称特殊的点的费马点可以坐标写出,一般的已知三个点的坐标求费马点的坐标的公式没有.

练习:设$z$为复数,$k$为实数,且$|z+2016|+|z+2017+ki|+|z+2018|$的最小值为$\sqrt{3}+1$则$k=$_____

提示:费马点,记$A(-2016,0),B(-2017,-k),C(-2018,0)$令$\angle{CZA}=120^{o}$
则$|BZ|=\sqrt{3}+1-\dfrac{2}{\sqrt{3}}*2=|k|-\dfrac{1}{\sqrt{3}}$得,$k=\pm 1$

MT【226】费马点两题的更多相关文章

  1. MT【249】离心率两题

    椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若 ...

  2. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  3. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  4. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  5. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

  6. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  7. 费马小定理&欧拉定理

    在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...

  8. POJ 2420 A Star not a Tree? (计算几何-费马点)

    A Star not a Tree? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3435   Accepted: 172 ...

  9. xdoj-1243 (费马平方和问题)

    1243: CKJ老师爱数学 时间限制: 1 Sec  内存限制: 128 MB提交: 56  解决: 13[提交][状态][讨论版] 题目描述 众所周知,CKJ老师非常热爱数学,他对于方程组的有自己 ...

随机推荐

  1. JaxbUtil转json转XML工具类

    json转换为XML工具类 package com.cxf.value; import org.springframework.util.StringUtils; import javax.xml.b ...

  2. 02-Centos7安装部署Mirrorgate

    1.以Docker方式运行 MirrorGate服务器作为docker镜像提供,因此要运行它只需在终端中执行以下命令: 注意mongo镜像要使用3.6版本,其他版本会提示版本问题. #Spinup m ...

  3. linux环境下nc命令的应用

    一.安装 下载 http://vault.centos.org/6.6/os/x86_64/Packages/nc-1.84-22.el6.x86_64.rpm rpm -iUv nc-1.84-22 ...

  4. Perhaps you are running on a JRE rather than a JDK

    在Eclipse中跑maven项目时,出现上面的问题: 1.有可能你的环境变量配置是在jre上面的,所以你要检查一下你配置文件,PATH和CLASSPATH都要检查 2.eclipse默认是跑在jre ...

  5. Ubuntu轻松编译openJDK

    花了三天在windows上搞openJDK,对bash本来就不熟,加上各种莫名依赖和脚本里的bug,身心俱疲.最后make all的时候产生一个莫名其妙的错误说什么有warning且-Werror置为 ...

  6. Node.js系列-express(下)

    前言 距上次更新博客又两个月多了,这两个月内除了上班时间忙公司的项目外,下班后也没有闲着,做了点外包,有小程序的,管理端的项目.也可能那段时间做的外包项目也都比较急,所以晚上都搞到一点左右睡,严重的压 ...

  7. RabbitMQ TroubleShooting

    RabbitMQ是一款优秀的消息队列中间件,提供了稳定.监控完善的产品,但是软件就会有bug.为了前进路径可以畅通,我们必须了解出现的一些故障的快速处理方式,毕竟在生产环境,时间就是生命,尽快的处理是 ...

  8. Quartz_配置

    quartz_jobs.xml job 任务 其实就是1.x版本中的<job-detail>,这个节点是用来定义每个具体的任务的,多个任务请创建多个job节点即可 name(必填) 任务名 ...

  9. 001_IntelliJ IDEA详细安装步骤

    安装IntelliJ IDEA 一.安装JDK 1 下载最新的jdk,这里下的是jdk-8u66 2 将jdk安装到默认的路径C:\Program Files\Java目录下 二.安装IntelliJ ...

  10. Ionic 入门与实战之第一章:Ionic 介绍与相关学习资源

    原文发表于我的技术博客 本文是「Ionic 入门与实战」系列连载的第一章,主要对 Ionic 的概念.发展历程.适配的移动平台等知识进行了介绍,并分享了 Ionic 相关的学习资源. 原文发表于我的技 ...