题目描述

  小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取
的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取,我们规定取到最后一
粒石子的人算输。小约翰相当固执,他坚持认为先取的人有很大的优势,所以他总是先取石子,而他的哥哥就聪明
多了,他从来没有在游戏中犯过错误。小约翰一怒之前请你来做他的参谋。自然,你应该先写一个程序,预测一下
谁将获得游戏的胜利。

输入

  本题的输入由多组数据组成第一行包括一个整数T,表示输入总共有T组数据(T≤500)。每组数据的第一行包
括一个整数N(N≤50),表示共有N堆石子,接下来有N个不超过5000的整数,分别表示每堆石子的数目。

输出

  每组数据的输出占一行,每行输出一个单词。如果约翰能赢得比赛,则输出“John”,否则输出“Brother”
,请注意单词的大小写。

样例输入

2
3
3 5 1
1
1

样例输出

John
Brother
 
 
反尼姆游戏模板题,当所有堆石子都是1个且异或和为0或至少有一堆石子大于1个且异或和不为0时先手必胜。证明参见博弈论讲解

#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,T,x;
int ans;
int sum;
int flag;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ans=0;
sum=0;
flag=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
if(x==1)
{
sum++;
}
else
{
flag=1;
}
ans=ans^x;
}
if((flag==0&&sum%2==0)||(ans!=0&&flag==1))
{
printf("John\n");
}
else
{
printf("Brother\n");
}
}
}

BZOJ1022[SHOI2008]小约翰的游戏——anti-SG(反尼姆博弈)的更多相关文章

  1. [bzoj1022][SHOI2008]小约翰的游戏John (反Nim游戏)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取 的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不 ...

  2. BZOJ1022 [SHOI2008]小约翰的游戏John 【博弈论】

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 3014  Solved: 1914 [Submi ...

  3. bzoj千题计划112:bzoj1022: [SHOI2008]小约翰的游戏John

    http://www.lydsy.com/JudgeOnline/problem.php?id=1022 http://www.cnblogs.com/TheRoadToTheGold/p/67448 ...

  4. [Bzoj1022][SHOI2008]小约翰的游戏John(博弈论)

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2976  Solved: 1894[Submit] ...

  5. bzoj1022: [SHOI2008]小约翰的游戏John(博弈SG-nim游戏)

    1022: [SHOI2008]小约翰的游戏John 题目:传送门 题目大意: 一道反nim游戏,即给出n堆石子,每次可以取完任意一堆或一堆中的若干个(至少取1),最后一个取的LOSE  题解: 一道 ...

  6. BZOJ1022 [SHOI2008]小约翰的游戏John

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取 的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不 ...

  7. [BZOJ1022] [SHOI2008] 小约翰的游戏John (SJ定理)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

  8. BZOJ1022:[SHOI2008]小约翰的游戏John(博弈论)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

  9. [bzoj1022][SHOI2008]小约翰的游戏 John (博弈论)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

随机推荐

  1. Android学习之基础知识十三 — 四大组件之服务详解第一讲

    一.服务是什么 服务(Service)是Android中实现程序后台运行的解决方案,它非常适合去执行那些不需要和用户交互而且还要求长期运行的任务.服务的运行不依赖于任何用户界面,即使程序被切换到后台, ...

  2. AT2134 Zigzag MST

    题面 题解 这个题目主要是连边很奇怪,但是我们可以发现一个性质:权值是递增的. 于是像下图的连边:(加边方式为\((A_1, B_1, 1)\)) 其实可以等价于如下连边: 于是我们将其变成了在环上连 ...

  3. CSharp 案例:用 Dynamic 来解决 DataTable 数值累加问题

    需求说明 给定一个 DataTable,如果从中取出数值类型列的值并对其累加? 限制:不知该列是何种数值类型. 解决方案 1.将表转换为 IEnumerable<dynamic>,而后获取 ...

  4. (7)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- 利用Polly+AOP+依赖注入封装的降级框架

    创建简单的熔断降级框架 要达到的目标是: 参与降级的方法参数要一样,当HelloAsync执行出错的时候执行HelloFallBackAsync方法. public class Person { [H ...

  5. 从源码的角度看 React JS 中批量更新 State 的策略(下)

    这篇文章我们继续从源码的角度学习 React JS 中的批量更新 State 的策略,供我们继续深入学习研究 React 之用. 前置文章列表 深入理解 React JS 中的 setState 从源 ...

  6. Net-SNMP V3协议 安装配置笔记(CentOS 6.3/5.6)

    注意:snmp V3,需要需要关闭selinux和防火墙: 关闭selinux方法: #vi /etc/selinux/config 将文件中的SELINUX="" 为 disab ...

  7. 第六周分析Linux内核创建一个新进程的过程

    潘恒 原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 task_struct结构: ...

  8. 《Linux内核分析》第13章

    <Linux内核设计与实现>第十三章--虚拟文件系统概述 20135211 一.通用文件系统接口 之所以可以使用这种通用接口(VF)对所有类型的文件系统进行操作,是因为内核在它的底层文件系 ...

  9. 《Linux内核分析》期终总结&《Linux及安全》期中总结

    <Linux内核分析>期终总结&<Linux及安全>期中总结 [李行之 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc. ...

  10. 网络:Xen理解

    Xen是由剑桥大学计算机实验室开发的一个开源项目.是一个直接运行在计算机硬件之上的用以替代操作系统的软件层,它能够在计算机硬件上并发的运行多个客户操作系统(Guest OS). 一.Xen虚拟化类型 ...