luogu4449 于神之怒加强版(莫比乌斯反演)
给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果
多组数据,T<=2000,1<=N,M,K<=5000000
推式子
\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)
\(=\sum_{p=1}^np^k\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=p]\)
\(=\sum_{p=1}^np^{k}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}[\gcd(i,j)=1]\)
\(=\sum_{p=1}^np^{k}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}\sum_{d|i,d|j}\mu(d)\)
\(=\sum_{p=1}^np^{k}\sum_{d=1}^n\mu(d)\lfloor\frac n{dp}\rfloor\lfloor\frac m{dp}\rfloor\)
\(=\sum_{q=1}^n\sum_{p|q}p^{k}\mu(\frac qp)\lfloor\frac n{q}\rfloor\lfloor\frac m{q}\rfloor\)
注意这里求得是个数,不需要提出\(p^2\)和\(d^2\),我式子推错了两次。。。
还是枚举倍数对于所有q处理\(\sum_{p|q}p^{k}\mu(\frac qp)\),然后打数论分块
注意这里如果定义p为1e9+7就不要再用p了。。。
#include <cstdio>
#include <functional>
using namespace std;
int n, prime[5000010], mu[5000010], tot, fuck = 5000000, p = 1000000007;
int s[5000010];
bool vis[5000010];
int qpow(int x, int y)
{
int res = 1;
while (y > 0)
{
if (y & 1) res = res * (long long)x % p;
x = x * (long long)x % p;
y >>= 1;
}
return res;
}
int main()
{
int t, k; scanf("%d%d", &t, &k);
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == 0) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
for (int pp = 1; pp <= fuck; pp++)
{
int sb = qpow(pp, k);
for (int q = pp, d = 1; q <= fuck; q += pp, d++)
s[q] = (s[q] + sb * mu[d]) % p;
}
for (int i = 1; i <= fuck; i++)
{
// printf("s[%d] = %d\n", i, s[i]);
s[i] = (s[i] + s[i - 1]) % p;
}
while (t --> 0)
{
int n, m, ans = 0;
scanf("%d%d", &n, &m); if (n > m) swap(n, m);
for (int i = 1, j; i <= n; i = j + 1)
j = min(n / (n / i), m / (m / i)), ans = (ans + (s[j] - s[i - 1]) * (long long)(n / i) % p * (m / i) % p) % p;
if (ans < 0) ans += p;
printf("%d\n", ans);
}
return 0;
}
56行,交上去一遍A
luogu4449 于神之怒加强版(莫比乌斯反演)的更多相关文章
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- BZOJ4407 于神之怒加强版 - 莫比乌斯反演
题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- 【BZOJ4407】于神之怒加强版 莫比乌斯反演
[BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
随机推荐
- Python函数(十)-装饰器(三)
如果多个函数想通过一个装饰器来实现不同的功能的话,可以给装饰器传入参数,让装饰器里的函数对参数进行判断,来实现不同的功能 # -*- coding:utf-8 -*- __author__ = &qu ...
- elastic(6) mget
转自:https://www.cnblogs.com/zhaijunming5/p/6424800.html GET /library/books/1 { "_index": &q ...
- C#windows窗体应用程序如何自适应大小
用C#的windows窗体应用程序做界面十分轻松,但是系统默认是没有让控件跟随窗体的大小改变而已改变的.所以需要我们手动去设置让窗体控件随着窗体的大小改变而改变.所以我们只需要将控件选择 然后把Anc ...
- Windows平台上通过git下载github的开源代码
常见指令整理: (1)检查ssh密钥是否已经存在.GitBash. 查看是否已经有了ssh密钥:cd ~/.ssh.示例中说明已经存在密钥 (2)生成公钥和私钥 $ ssh-keygen -t rsa ...
- JVM实用参数(三)打印所有XX参数及值
JVM实用参数(三)打印所有XX参数及值 原文地址:https://blog.codecentric.de/en/2012/07/useful-jvm-flags-part-3-printing-al ...
- 按钮控件JButton的使用
---------------siwuxie095 工程名:TestUI 包名:com.siwuxie095.ui 类名:TestButton. ...
- centos 安装 python flask 和python3安装flask
pip install Flask python3安装 pip3 install flask
- 【转】PEAR安装、管理及使用
PEAR安装 linux下只要你安装的是PHP 4.3.0以上的版本,默认安装都是支持PEAR的,除非你使用了”--WITHOUT-PEAR”选项,修改PHP.INI文件,在INCLUDE_PAT ...
- debug---null Pointer Exception--一步步查找(1)
找到对应的226行代码: 通过debug打断点,然后选中需要查看的代码,右击,选择Evaluate Expresstion,选择确认,就可以弹出具体的值,发现真的为null. 通过simon帮忙分析, ...
- CodeForces 782B The Meeting Place Cannot Be Changed (二分)
题意:题意:给出n个人的在x轴的位置和最大速度,求n个人相遇的最短时间. 析:二分时间,然后求并集,注意精度,不然会超时. 代码如下: #pragma comment(linker, "/S ...