link

给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果

多组数据,T<=2000,1<=N,M,K<=5000000

推式子

\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)

\(=\sum_{p=1}^np^k\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=p]\)

\(=\sum_{p=1}^np^{k}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}[\gcd(i,j)=1]\)

\(=\sum_{p=1}^np^{k}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}\sum_{d|i,d|j}\mu(d)\)

\(=\sum_{p=1}^np^{k}\sum_{d=1}^n\mu(d)\lfloor\frac n{dp}\rfloor\lfloor\frac m{dp}\rfloor\)

\(=\sum_{q=1}^n\sum_{p|q}p^{k}\mu(\frac qp)\lfloor\frac n{q}\rfloor\lfloor\frac m{q}\rfloor\)

注意这里求得是个数,不需要提出\(p^2\)和\(d^2\),我式子推错了两次。。。

还是枚举倍数对于所有q处理\(\sum_{p|q}p^{k}\mu(\frac qp)\),然后打数论分块

注意这里如果定义p为1e9+7就不要再用p了。。。

#include <cstdio>
#include <functional>
using namespace std; int n, prime[5000010], mu[5000010], tot, fuck = 5000000, p = 1000000007;
int s[5000010];
bool vis[5000010]; int qpow(int x, int y)
{
int res = 1;
while (y > 0)
{
if (y & 1) res = res * (long long)x % p;
x = x * (long long)x % p;
y >>= 1;
}
return res;
} int main()
{
int t, k; scanf("%d%d", &t, &k);
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == 0) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
for (int pp = 1; pp <= fuck; pp++)
{
int sb = qpow(pp, k);
for (int q = pp, d = 1; q <= fuck; q += pp, d++)
s[q] = (s[q] + sb * mu[d]) % p;
}
for (int i = 1; i <= fuck; i++)
{
// printf("s[%d] = %d\n", i, s[i]);
s[i] = (s[i] + s[i - 1]) % p;
}
while (t --> 0)
{
int n, m, ans = 0;
scanf("%d%d", &n, &m); if (n > m) swap(n, m);
for (int i = 1, j; i <= n; i = j + 1)
j = min(n / (n / i), m / (m / i)), ans = (ans + (s[j] - s[i - 1]) * (long long)(n / i) % p * (m / i) % p) % p;
if (ans < 0) ans += p;
printf("%d\n", ans);
}
return 0;
}

56行,交上去一遍A

luogu4449 于神之怒加强版(莫比乌斯反演)的更多相关文章

  1. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  2. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  3. BZOJ4407 于神之怒加强版 - 莫比乌斯反演

    题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...

  4. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  5. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

  6. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  7. BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]

    题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...

  8. BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)

    Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...

  9. BZOJ.4407.于神之怒加强版(莫比乌斯反演)

    题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...

随机推荐

  1. 转:三思!大规模MySQL运维陷阱之基于MyCat的伪分布式架构

    在微信公众号看到一篇关于mycat的文章,觉得分析的很不错,给大家分享一下 三思!大规模MySQL运维陷阱之基于MyCat的伪分布式架构 原文链接:https://mp.weixin.qq.com/s ...

  2. Rails:Rails使用sqlite3数据库 及数据操作基本命令

    Rails默认使用sqlite3做为数据库,虽然很多人更喜欢mysql.但如果是学习用,sqlite3够了,因为它轻量,不需要安装. 首先对sqlite3做个简短的介绍:1.sqlite3不需要配置, ...

  3. java.util.Date、java.sql.Date、java.sql.Time、java.sql.Timestamp区别和总结

    在web开发中,避免不了对日期的操作,就几种常见的日期操作做个总结(部分参考网络,在此表示感谢): java.util.Date.java.sql.Date.java.sql.Time.java.sq ...

  4. C语言学习笔记--动态内存分配

    1. 动态内存分配的意义 (1)C 语言中的一切操作都是基于内存的. (2)变量和数组都是内存的别名. ①内存分配由编译器在编译期间决定 ②定义数组的时候必须指定数组长度 ③数组长度是在编译期就必须确 ...

  5. Activity的显式跳转和隐式挑战

    安卓中Activity的跳转几乎是每一个APP都会用到的技术点.而且他的使用时十分简单的. 这里我们先说一下主要的技术要点: 1.在清单文件中注册新的Activity 2.通过意图跳转 这里我们看一下 ...

  6. python爬虫(8)--Xpath语法与lxml库

    1.XPath语法 XPath 是一门在 XML 文档中查找信息的语言.XPath 可用来在 XML 文档中对元素和属性进行遍历.XPath 是 W3C XSLT 标准的主要元素,并且 XQuery ...

  7. bzoj 2653 middle(主席树)

    题面:https://vjudge.net/problem/HYSBZ-2653 博客:https://blog.csdn.net/litble/article/details/78984846 这个 ...

  8. Swing界面组件的通用属性

    ----------------siwuxie095                             Swing 界面组件(控件)的通用属性:         (1)enabled:启用/禁用 ...

  9. JS中的!= 、== 、!==、===的用法和区别

    与c++中每一种类型都有明确的的定义不同:因JS中var定义存在,未具体区分类型,!=与==不能包含所有的条件,故加入!==与===用法: var num = 1; var str = '1'; va ...

  10. MSER

    1.注释很全的分析:http://blog.csdn.net/zhaocj/article/details/40742191 2.opencv采用的mser实现方法 * 1. the gray ima ...