10^9以上素数判定,Miller_Rabin算法
#include<iostream>
#include<cstdio>
#include<ctime>
#include<string.h>
#include<stdlib.h>
#define LL long long
using namespace std; const int S=20;//随机算法判定次数,S越大,判错概率越小
LL ans;
//给定一个数,判断是否是素数(常用long long大数)
LL mult_mod(LL a,LL b,LL mod) //(a*b)%c a,b,c<2^63
{
a%=mod;
b%=mod;
LL ans=0;
while(b)
{
if(b&1)
{
ans=ans+a;
if(ans>=mod)
ans=ans-mod;
}
a=a<<1;
if(a>=mod) a=a-mod;
b=b>>1;
}
return ans;
} LL pow_mod(LL a,LL b,LL mod) // a^b%mod
{
LL ans=1;
a=a%mod;
while(b)
{
if(b&1)
{
ans=mult_mod(ans,a,mod);
}
a=mult_mod(a,a,mod);
b=b>>1;
}
return ans;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false bool check(LL a,LL n,LL x,LL t)
{
LL ret=pow_mod(a,x,n);
LL last=ret;
for(int i=1;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==1 && last!=1 && last!=n-1) return true;//合数
last=ret;
}
if(ret!=1) return true;
else return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<2)return false;
if(n==2) return true;
if( (n&1)==0) return false;//偶数
LL x=n-1;
LL t=0;
while( (x&1)==0 ) { x>>=1;t++;}
for(int i=0;i<S;i++)
{
LL a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
}
void find(long long n,int c)
{
if(n==1)
return ;
if(Miller_Rabin(n))
{
//m[n]++;
ans=min(ans,n);
return ;
}
long long p=n;
while(p>=n)
p=pollard_rho(p,c--);
find(p,c);
find(n/p,c);
}
int main(){
int a;
scanf("%d",&a);
while(a--)
{
long long x;
scanf("%lld",&x);
if(Miller_Rabin(x))cout<<"prime"<<endl;
else{
find(x,12312);
cout<<ans<<endl;
}
}
}
10^9以上素数判定,Miller_Rabin算法的更多相关文章
- 数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: h ...
- Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...
- Miler-Rabbin素数判定
前言 素数判定? 小学生都可以打的出来! 直接暴力O(n)O(\sqrt n)O(n)-- 然后就会发现,慢死了-- 于是我们想到了筛法,比如前几天说到的詹欧筛法. 但是线性的时间和空间成了硬伤-- ...
- 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29046 Accepted: 7342 Case ...
- Miller-Rabin算法 codevs 1702 素数判定 2
转载自:http://www.dxmtb.com/blog/miller-rabbin/ 普通的素数测试我们有O(√ n)的试除算法.事实上,我们有O(slog³n)的算法. 定理一:假如p是质数,且 ...
- miller_rabin算法检测生成大素数的RSA算法实现
import math from functools import reduce #用于合并字符 from os import urandom #系统随机的字符 import binascii # ...
- Miller_Rabin算法_单个素数检测_启发式算法
/** Miller_Rabin 算法进行素数测试 快速判断一个<2^63的数是不是素数,主要是根据费马小定理 */ #define ll __int128 ; ///随机化算法判定次数 ll ...
- 数学:随机素数测试(Miller_Rabin算法)和求整数素因子(Pollard_rho算法)
POJ1811 给一个大数,判断是否是素数,如果不是素数,打印出它的最小质因数 随机素数测试(Miller_Rabin算法) 求整数素因子(Pollard_rho算法) 科技题 #include< ...
- 公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法!
公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法! 先存档再说,以后实验报告还得打印上交. Miller-Rabin大素数判定对于学算法的人来讲不是什么难事,主要了解其原理. 先来灌 ...
随机推荐
- (转)mkpasswd 的使用
原文:http://blog.csdn.net/u010339879/article/details/69788032 这个命令是随机生成 密码的一个工具, 如果没有这个命令,请安装相应的包. yum ...
- 单元测试-Junit-Mockit-PowerMock
0. Junit5 1. Junit4 //手动命令行测试 java -cp /usr1/junit:/usr1/cdncms/lib/* org.junit.runner.JUnitCore com ...
- oracle 空值排序,排在最前面或者最后面
1,排在最前面用order by name nulls first; eg:select t.name,t.code from table t where t.code!='1' order by n ...
- Matlab多项式回归实现
多项式回归也称多元非线性回归,是指包含两个以上变量的非线性回归模型.对于多元非线性回归模型求解的传统解决方案,仍然是想办法把它转化成标准的线性形式的多元回归模型来处理. 多元非线性回归分析方程 如果自 ...
- 【杜鹃沙盒】Cuckoo SandBox学习笔记
这是个github上开源前十的项目之一,笔者只完成学习了部分功能,前来分享点经验 整个工程 连接地址 :https://github.com/cuckoosandbox/cuckoo 0x01调试运行 ...
- jQuery的下拉框应用
jQuery的下拉框应用 jQuery的下拉框左右选择应用 直接上代码 <!DOCTYPE html> <html> <head> <meta charset ...
- 在 CentOS 上安装 vsftp 服务
在 CentOS 上安装 vsftp 服务 1.查看当前 CentOS 服务器是否已安装了 vsftpd 服务: rpm -q vsftpd 如果打印如下类似的信息则表明已安装 vsftpd 服务: ...
- spring笔记4-事务管理
一.xml配置文件形式 通过转账案例,学习事务管理 1.建立数据库 2.编写entity package huguangqin.com.cnblogs.entity; public class Use ...
- 编写xml文件的几个注意事项
作者:朱金灿 来源:http://blog.csdn.net/clever101 xml注释的规范是这样的: <!-xml注释内容 --> 值得注意的是任何xml注释都必须放在<?x ...
- 【Microsoft Azure学习之旅】Azure Java SDK - Service Bus的认证问题
[2014年12月12日增加备注:12月10日,Microsoft Azure Java SDK team发布了v0.7.0版本,增加对Service Bus SAS的支持,已解决这个问题:-)] 最 ...