[JZOJ4913] 【GDOI2017模拟12.3】告别
题目
描述
题目大意
给你两个排列AAA和BBB,每次随即选三个数进行轮换操作,问mmm次操作内使AAA变成BBB的概率。
思考历程
首先随便搞一下,就变成了AAA中每个数回归自己原位。
一眼望去,感觉nnn很小……
最简单的想法是将每个情况都储存起来,然后搞出它们之间的转移情况。
然后发现这些状态是存不下的。
于是我就开始想有没有哪些状态是等价的。
然后我发现对于每个数字,可以简单地归为是否回归原位的两种情况。这样状态倒小了,可是又能怎么转移呢?mmm这么大,肯定打矩阵乘法。这么大的状态还是不能过啊!
于是我就放弃了希望:还能怎么压?
正解
题解的方法真是令人惊叹。
不过题解说得晦涩难懂,我还是用人话来解决一下。
我们可以把当前的数组看成一个边集,表示从某个点连向另一个点。
显然点数有nnn个,边数nnn个,并且每个点有且仅有一个出度(和入度)。
那么这个图就是由几个环组成的。
如果我们将同环中的三个数拿出来轮换,轮换过后它们依然能够在这个环中,环的大小不变。
我们可以感性地理解它为等价的。
那么我们换一下状态的表示方法。对于每个状态,我们记录每个环的大小,用个桶来存它。
环的内部结构具体是什么可以不用去理睬它,我们只知道这些都是一样的,这就足够了(感性大法好)。
显然,每个数回归到自己原位就相当于是nnn个环,这种情况只会有一种,我们最终要算出来的是这个的答案,所以不会被其它杂七杂八的东西给影响(假设这个状态的编号为111)
让我们算一算这样压缩状态的状态数,然后就可以发现这是nnn的划分数,当n=14n=14n=14时只有135135135。
这么小的数据,当然可以矩阵乘法了。
于是我们就开始设fi,jf_{i,j}fi,j为状态iii转移到状态jjj的概率。
有个问题是如何转移。
一开始我想了很久,但最后才发现我想复杂了。实际上有个最简单也最粗暴的方法:造出一个排列!
随便造出一个满足这个状态的排列,然后O(n3)O(n^3)O(n3)地转移,将转移过后的排列变成状态。这样就可以记录了。
当然,要用个mapmapmap或打哈希表来记录每种状态的编号。
由于nnn很小,这样跑还特别快。
最后是要注意的地方,题目说在mmm次操作内复原,所以到了111状态后,就不需要再转移出来了。
也就是f1,1=1f_{1,1}=1f1,1=1且对于i>1i> 1i>1,使得f1,i=0f_{1,i}=0f1,i=0
时间复杂度就不用分析了吧……
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#define mo 998244353
map<long long,int> bz;
int n,invn3,m;
int a[15],b[15],c[15];
long long my_hash(int s[]){
long long res=0;
for (int i=n;i>=1;--i)
res=res*(n+1)+s[i];
return res;
}
int s[15];
void fors(int k,int sum,int i,void work()){//枚举状态……套了个函数
if (sum==0){
work();
return;
}
for (;i<=sum;++i){
s[i]++;
fors(k+1,sum-i,i,work);
s[i]--;
}
}
int cnt;
void init(){
bz[my_hash(s)]=++cnt;
}
int *tran(int *a){
static bool vis[15];
static int s[15];
memset(vis,0,sizeof vis);
memset(s,0,sizeof s);
for (int i=0;i<n;++i){
if (vis[i])
continue;
int c=0;
for (int j=i;!vis[j];j=a[j],c++)
vis[j]=1;
s[c]++;
}
return s;
}
struct Matrix{
int mat[151][151];
inline void operator*=(Matrix &b){
static Matrix res;
for (int i=1;i<=cnt;++i)
for (int j=1;j<=cnt;++j){
long long sum=0;
for (int k=1;k<=cnt;++k)
sum+=1ll*mat[i][k]*b.mat[k][j]%mo;
res.mat[i][j]=sum%mo;
}
memcpy(mat,res.mat,sizeof res);
}
inline void get_pow(int n){
static Matrix res;
memset(res.mat,0,sizeof res);
for (int i=1;i<=cnt;++i)
res.mat[i][i]=1;
for (;n;n>>=1,*this*=*this)
if (n&1)
res*=*this;
memcpy(this,res.mat,sizeof res);
}
} f;
void calc(){
static int tmp[15],tmp2[15];
int numt=bz[my_hash(s)];
if (numt==1){
f.mat[1][1]=1;
return;
}
for (int i=1,j=0;i<=n;++i)//造一个序列
for (int k=0;k<s[i];++k){
int jj=j;
for (;j<jj+i;++j)
tmp[j]=j-1;
tmp[jj]=j-1;
}
memcpy(tmp2,tmp,sizeof tmp);
for (int i=0;i<n;++i)
for (int j=0;j<n;++j)
if (i!=j)
for (int k=0;k<n;++k)
if (i!=k && j!=k){
tmp2[i]=tmp[k],tmp2[j]=tmp[i],tmp2[k]=tmp[j];
int numt2=bz[my_hash(tran(tmp2))];
(f.mat[numt][numt2]+=invn3)%=mo;
tmp2[i]=tmp[i],tmp2[j]=tmp[j],tmp2[k]=tmp[k];
}
}
int main(){
freopen("goodbye.in","r",stdin);
freopen("goodbye.out","w",stdout);
scanf("%d%d",&n,&m);
invn3=1;
for (int i=mo-2,tmp=1ll*n*(n-1)%mo*(n-2)%mo;i;i>>=1,tmp=1ll*tmp*tmp%mo)
if (i&1)
invn3=1ll*invn3*tmp%mo; //invn3=(n*(n-1)*(n-2))^(-1)
for (int i=0;i<n;++i){
scanf("%d",&a[i]);
a[i]--;
}
for (int i=0;i<n;++i){
scanf("%d",&b[i]);
b[i]--;
c[b[i]]=a[i];
}
fors(0,n,1,init);
fors(0,n,1,calc);
f.get_pow(m);
int numa=bz[my_hash(tran(c))];
printf("%d\n",f.mat[numa][1]);
return 0;
}
用的语法可能有点骚……不过应该能看懂吧?
总结
这道题的压缩手段,不可不谓是极致了。
[JZOJ4913] 【GDOI2017模拟12.3】告别的更多相关文章
- jzoj4918. 【GDOI2017模拟12.9】最近公共祖先 (树链剖分+线段树)
题面 题解 首先,点变黑的过程是不可逆的,黑化了就再也洗不白了 其次,对于\(v\)的祖先\(rt\),\(rt\)能用来更新答案当且仅当\(sz_{rt}>sz_{x}\),其中\(sz\)表 ...
- jzoj4915. 【GDOI2017模拟12.9】最长不下降子序列 (数列)
题面 题解 调了好几个小时啊--话说我考试的时候脑子里到底在想啥-- 首先,这个数列肯定是有循环节的,而且循环节的长度\(T\)不会超过\(D\) 那么就可以把数列分成三份,\(L+S+R\),其中\ ...
- jzoj4916. 【GDOI2017模拟12.9】完全背包问题 (背包+最短路)
题面 题解 考场上蠢了--这么简单的东西都想不到-- 首先排序加去重. 先来考虑一下,形如 \[a_1x_1+a_2x_2+...a_nx_n=w,a_1<a_2<...<a_n,x ...
- 【GDOI2017模拟12.9】最近公共祖先
题目 分析 首先,将这些节点按dfs序建一棵线段树. 因为按dfs序,所以在同一子树上的节点会放在线段树相邻的位置. 发现,对于一个位置x,它的权值只会对以x为根的子树造成影响. 当修改x时,用w[x ...
- 【JZOJ4925】【GDOI2017模拟12.18】稻草人
题目描述 YLOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,YLOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要满足以下条 ...
- noip模拟12[简单的区间·简单的玄学·简单的填数]
noip模拟12 solutions 这次考试靠的还是比较好的,但是还是有不好的地方, 为啥嘞??因为我觉得我排列组合好像白学了诶,文化课都忘记了 正难则反!!!!!!!! 害没关系啦,一共拿到了\( ...
- Noip模拟12 2021.7.12
T1 interval 亏得昨天晚上改掉了T3并且理解了单调栈,今天一扫这题目就知道要用啥了. 先预处理出以a[i]为最大值的最大左右区间.然后再将a[i]取%!!!是的,要不然会影响单调栈的使用.. ...
- NOIP模拟12
也算是最近几次比较水的一次吧. 考试时看T1像个打表找规律的题,扔了,去看T2,带修莫队??不会,完戏.看了T3,我决定还是去看T1. 看着T1,我突然发现T2是个大水题:主席树就行,不带修,修改时只 ...
- [考试总结]noip模拟12
菜 今天总体来说 菜爆了,打了 \(3\) 个暴力,没有一个是正解,并且每一个分数都低得要命... 主要还是太菜了... 第一题开题发现和昨天 \(T3\) 一样,然而因为还没学可持久化数据结构就咕掉 ...
随机推荐
- IDea 工具debug模式详细使用说明
IDea 工具debug模式详细使用说明 IDEA中如何使用debug调试项目 一步一步详细教程 Debug用来追踪代码的运行流程,通常在程序运行过程中出现异常,启用Debug模式可以分析定位异常发生 ...
- git提交流程简述
1.初始化:一个项目只执行一次 只要有.git隐藏文件夹就ok了 git init 或者 git clone url 2.为远程github仓库生成别名(remote-name就是远程仓库的别名)这一 ...
- 回车切换input选框
在工作中许多时候需要考虑到用户体验,当按下回车键时切换input选框就来得十分必要. <!DOCTYPE HTML> <html> <head> <meta ...
- arm-linux-readelf 的使用
1. 读 elf 文件开始的文件头部 [arm@localhost gcc]$ armlinuxreadelf h hello ELF Header: Magic: 7f 45 4c 46 ...
- 神经网络 (1)- Alexnet
文章目录 模型结构 conv1层 conv2层 conv3层 conv4层 conv5层 FC6全链接图: fc7全连接层:和fc6类似. fc8链接层: 模型优化 选择ReLU作为激活函数 多GPU ...
- Python自学:第五章 对数字列表执行简单的统计计算
>>>digits = [1,2,3,4,5,6,7,8,9,0] >>>mid(digits) 0 >>>max(digits) 9 >& ...
- leetcode-216-组合总和③
题目描述: 方法一:回溯 class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: res = ...
- 挂载U盘
.fdisk -l 查看当前系统存储盘 (sdaX一般是系统自带, sdbX则是外接) .mount /dev/sdbX /mnt/usb/ (如果usb目录不存在可创建新目录) .umount /m ...
- gulp是什么?
什么是gulp? gulp初涉 1.什么是gulp? gulp是前端开发过程中一种基于流的代码构建工具,是自动化项目的构建利器:它不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的 ...
- php算法题---对称的二叉树
php算法题---对称的二叉树 一.总结 一句话总结: 可以在isSymmetrical()的基础上再加一个函数comRoot,函数comRoot来做树的递归判断 /*思路:首先根节点以及其左右子树, ...