TensorFlow提供了一个可视化工具TensorBoard,它能够将训练过程中的各种绘制数据进行展示出来,包括标量,图片,音频,计算图,数据分布,直方图等,通过网页来观察模型的结构和训练过程中各个参数的变化。

Tensorboard通过一个日志展示系统进行数据可视化,在session运行图的时候,将各类的数据汇总并输出到日志文件中。然后启动Tensorboard服务,Tensorboard读取日志文件,并开启6006端口提供web服务。让用户可以在浏览器中查看数据。

相关的API函数如下;

tf.summary.scalar() :标量数据汇总,输出protobuf

tf.summary.histogram() :记录变量var的直方图,输出到直方图汇总的protobuf

tf.summary.image() :图像数据汇总,输出protobuf

tf.summary.merge() :合并所有的汇总日志

tf.summary.FileWriter() :创建SummaryWriter

tf.summary.FileWriter().add_summary()

tf.summary.FileWriter().add_session_log()

tf.summary.FileWriter().add_event()

tf.summary.FileWriter().add_graph() : 将protobuf写入文件的类

代码如下:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 # plt.plot(train_x, train_y, 'r.')
# plt.grid(True)
# plt.show() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b tf.summary.histogram('z', z) cost = tf.reduce_mean(tf.square(Y - z)) tf.summary.scalar('loss', cost) learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 20
display_step = 2 with tf.Session() as sess:
sess.run(init)
loss_list = [] merged_summary_op = tf.summary.merge_all() # 合并所有的summary
summary_wirter = tf.summary.FileWriter('log/linear', sess.graph) for epoch in range(training_epochs):
for (x, y) in zip(train_x, train_y):
sess.run(optimizer,feed_dict={X:x, Y:y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X:x, Y:y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss)
summary_str = sess.run(merged_summary_op, feed_dict={X:train_x, Y:train_y})
summary_wirter.add_summary(summary_str, epoch) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y})
print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x*w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show()

上述的可视化步骤主要是

  1.将需要可视化的变量加入summary,做好可视化的定义操作

  2.merged_summary_op = tf.summary.merge_all() # 合并所有的summary

  3.创建summary_wirter对象,并将图写入文件

  4.获取可视化的数据,通过summary_writer对象将数据进行写入

在程序运行完,将会在指定好的路径中生成日志文件,

通过命令行工具切换到该目录,

执行命令:tensorboard --logdir=生成的日志文件的路径

打开浏览器进行查看,

定义的图的结构:

TensorFlow——TensorBoard可视化的更多相关文章

  1. tensorflow Tensorboard可视化-【老鱼学tensorflow】

    tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...

  2. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  3. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

  4. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  5. Tensorflow 之 TensorBoard可视化Graph和Embeddings

    windows下使用tensorboard tensorflow 官网上的例子程序都是针对Linux下的:文件路径需要更改 tensorflow1.1和1.3的启动方式不一样 :参考:Running ...

  6. 使用TensorBoard可视化工具

    title: 使用TensorBoard可视化工具 date: 2018-04-01 13:04:00 categories: deep learning tags: TensorFlow Tenso ...

  7. 利用tensorboard可视化checkpoint模型文件参数分布

    写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布 ...

  8. 【猫狗数据集】利用tensorboard可视化训练和测试过程

    数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...

  9. 使用 TensorBoard 可视化模型、数据和训练

    使用 TensorBoard 可视化模型.数据和训练 在 60 Minutes Blitz 中,我们展示了如何加载数据,并把数据送到我们继承 nn.Module 类的模型,在训练数据上训练模型,并在测 ...

随机推荐

  1. H3C 帧中继显示与调试

  2. Codeforces Round #187 (Div. 1 + Div. 2)

    A. Sereja and Bottles 模拟. B. Sereja and Array 维护全局增量\(Y\),对于操作1(即\(a_{v_i}=x\))操作,改为\(a_{v_i}=x-Y\). ...

  3. SELECT command denied to user ''@'%' for column 'xxx_id' in table 'users_xxx' 权限问题

    问题的原因是:最主要是权限的问题. 大概说下 ,我导数据库时提示错误:SELECT command denied to user ''@'%' for column 'xxx_id' in table ...

  4. C# 如何引用 WshShell 类

    如果想要创建快捷方式等,很多使用都需要引用 WshShell 类,这个类需要通过 COM 的方法引用 引用 WshShell 不是在一个程序集,而是 Windows Script Host Objec ...

  5. 关于vue-cli打包配置部署404

    在vue脚手架(vue-cli)下我很很快的就可以搭建自己的开发环境,但是我们把项目编写完后,需要进行打包上线会遇到各种问题,在根据版本问题,(vue3的版本跟之前相比少了很多配置项),下面是我用老版 ...

  6. 2019-1-29-UWP-IRandomAccessStream-与-Stream-互转

    title author date CreateTime categories UWP IRandomAccessStream 与 Stream 互转 lindexi 2019-01-29 16:33 ...

  7. ie6 ie7下,Li不能自动换行,出现竖排文字现象(PS:li不固定宽度,所有li同一行显示),在ie8却可以

    好久没写CSS,今天又发现一个ie兼容问题. 我需要所有的li在同一行显示,不固定Li的宽度,如果一行排不下,需要自动换行.当然Li的内容长度不同. 必须在li加white-space:nowrap; ...

  8. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  9. How to parse version range

    Now we are making a solution that has to get the package reference. But the version of package refer ...

  10. shell 脚本文件十六进制转化为ascii码代码, Shell中ASCII值和字符之间的转换

    Shell中ASCII值和字符之间的转换     1.ASCII值转换为字符        方法一: i=97 echo $i | awk '{printf("%c", $1)}' ...