TensorFlow提供了一个可视化工具TensorBoard,它能够将训练过程中的各种绘制数据进行展示出来,包括标量,图片,音频,计算图,数据分布,直方图等,通过网页来观察模型的结构和训练过程中各个参数的变化。

Tensorboard通过一个日志展示系统进行数据可视化,在session运行图的时候,将各类的数据汇总并输出到日志文件中。然后启动Tensorboard服务,Tensorboard读取日志文件,并开启6006端口提供web服务。让用户可以在浏览器中查看数据。

相关的API函数如下;

tf.summary.scalar() :标量数据汇总,输出protobuf

tf.summary.histogram() :记录变量var的直方图,输出到直方图汇总的protobuf

tf.summary.image() :图像数据汇总,输出protobuf

tf.summary.merge() :合并所有的汇总日志

tf.summary.FileWriter() :创建SummaryWriter

tf.summary.FileWriter().add_summary()

tf.summary.FileWriter().add_session_log()

tf.summary.FileWriter().add_event()

tf.summary.FileWriter().add_graph() : 将protobuf写入文件的类

代码如下:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 # plt.plot(train_x, train_y, 'r.')
# plt.grid(True)
# plt.show() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b tf.summary.histogram('z', z) cost = tf.reduce_mean(tf.square(Y - z)) tf.summary.scalar('loss', cost) learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 20
display_step = 2 with tf.Session() as sess:
sess.run(init)
loss_list = [] merged_summary_op = tf.summary.merge_all() # 合并所有的summary
summary_wirter = tf.summary.FileWriter('log/linear', sess.graph) for epoch in range(training_epochs):
for (x, y) in zip(train_x, train_y):
sess.run(optimizer,feed_dict={X:x, Y:y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X:x, Y:y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss)
summary_str = sess.run(merged_summary_op, feed_dict={X:train_x, Y:train_y})
summary_wirter.add_summary(summary_str, epoch) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y})
print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x*w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show()

上述的可视化步骤主要是

  1.将需要可视化的变量加入summary,做好可视化的定义操作

  2.merged_summary_op = tf.summary.merge_all() # 合并所有的summary

  3.创建summary_wirter对象,并将图写入文件

  4.获取可视化的数据,通过summary_writer对象将数据进行写入

在程序运行完,将会在指定好的路径中生成日志文件,

通过命令行工具切换到该目录,

执行命令:tensorboard --logdir=生成的日志文件的路径

打开浏览器进行查看,

定义的图的结构:

TensorFlow——TensorBoard可视化的更多相关文章

  1. tensorflow Tensorboard可视化-【老鱼学tensorflow】

    tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...

  2. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  3. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

  4. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  5. Tensorflow 之 TensorBoard可视化Graph和Embeddings

    windows下使用tensorboard tensorflow 官网上的例子程序都是针对Linux下的:文件路径需要更改 tensorflow1.1和1.3的启动方式不一样 :参考:Running ...

  6. 使用TensorBoard可视化工具

    title: 使用TensorBoard可视化工具 date: 2018-04-01 13:04:00 categories: deep learning tags: TensorFlow Tenso ...

  7. 利用tensorboard可视化checkpoint模型文件参数分布

    写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布 ...

  8. 【猫狗数据集】利用tensorboard可视化训练和测试过程

    数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...

  9. 使用 TensorBoard 可视化模型、数据和训练

    使用 TensorBoard 可视化模型.数据和训练 在 60 Minutes Blitz 中,我们展示了如何加载数据,并把数据送到我们继承 nn.Module 类的模型,在训练数据上训练模型,并在测 ...

随机推荐

  1. 洛谷P2590 [ZJOI2008]树的统计 题解 树链剖分+线段树

    题目链接:https://www.luogu.org/problem/P2590 树链剖分模板题. 剖分过程要用到如下7个值: fa[u]:u的父节点编号: dep[u]:u的深度: size[u]: ...

  2. laravel5.*安装使用Redis以及解决Class 'Predis\Client' not found和Fatal error: Non-static method Redis::set() cannot be called statically错误

    https://phpartisan.cn/news/35.html laravel中我们可以很简单的使用Redis,如何在服务器安装Redis以及原创访问你们可以访问Ubuntu 设置Redis密码 ...

  3. libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择

    直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...

  4. 2018-8-10-win10-uwp-使用-Geometry-resources-在-xaml

    title author date CreateTime categories win10 uwp 使用 Geometry resources 在 xaml lindexi 2018-08-10 19 ...

  5. H3C 最大跳数16导致网络尺度小

  6. P1101 走迷宫一

    题目描述 大魔王抓住了爱丽丝,将她丢进了一口枯井中,并堵住了井口. 爱丽丝在井底发现了一张地图,他发现他现在身处一个迷宫当中,从地图中可以发现,迷宫是一个N*M的矩形,爱丽丝身处迷宫的左上角,唯一的出 ...

  7. 【a602】最大乘积

    Time Limit: 1 second Memory Limit: 32 MB [问题描述] 一个正整数一般可以分为几个互不相同的自然数的,如3=1+2,4=1+3,5=1+4=2+3,6=1+5= ...

  8. tensorflow在文本处理中的使用——Word2Vec预测

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  9. 性能测试基础-SOCKET协议用例

    1.首先在进行性能测试的时候,我们要了解软件的通信协议是什么,我们使用什么协议,如何去模拟.SOCKET协议主要应用于在C/S模式的系统. 作者本人已当初做过的C/S架构的系统做的脚本录制,在上面做脚 ...

  10. C# 从零开始写 SharpDx 应用 绘制基础图形

    本文告诉大家通过 SharpDx 画出简单的 2D 界面 本文属于 SharpDx 系列 博客,建议从头开始读 本文分为两步,第一步是初始化,第二步才是画界面 初始化 先创建 RenderForm 用 ...