ABBA dp

题意

给出2(N+M)个AB字符,问能构造出N个AB子序列和M个BA子序列组成的2*(n+m)的序列种类有多少

思路

碰到计数构造类的题目,首先要去找到判断合法性的条件,即什么情况下合法,什么情况下非法,剩下的工作无非就是实现问题,要么排列组合,要么DP,要么一起用。本题中,还要考虑构造中的贪心问题,也就是给你一堆AB,你怎么构造?很容易想到肯定是前面的A和最后几个B构造出AB,剩下的B和剩下的A构造出BA,也就是前面几个A是用来构造AB的,前面几个B是用来构造BA的,那么我们就可以得出合法判断条件,前面的A过多,导致AB过多 也就是当前A的数量-B的数量>所需AB的数量即:i-j>n 同理B的判断条件为j-i>m 转移很直白,代码量也很短

强调,构造计数类题目需要找出判断合法的条件!!!

#include<bits/stdc++.h>
using namespace std;
const int maxn=5e3+5;
long long dp[maxn][maxn];
const int mod=1e9+7;
long long add(long long x,long long y){
return (x*1ll+y)%mod; }
int main(){
int n,m;
while(scanf("%d%d",&n,&m)==2){
for(int i=0;i<=n+m;i++){
for(int j=0;j<=n+m;j++)dp[i][j]=0;
}
dp[0][0]=1;
for(int i=1;i<=m;i++){
dp[0][i]=1;
}
for(int i=1;i<=n;i++){
dp[i][0]=1;
}
for(int i=1;i<=n+m;i++){
for(int j=1;j<=n+m;j++){
dp[i][j]=add(dp[i-1][j],dp[i][j-1]);
if(i-j>n||j-i>m){
dp[i][j]=0; }
// else if(i>n&&j-m-(i-1-n)>=1)dp[i][j]=add(dp[i-1][j],dp[i][j-1]);
// else if(i>n&&j<=m)dp[i][j]=0;
// else if(j>m&&i-n-(j-1-m)>=1)dp[i][j]=add(dp[i-1][j],dp[i][j-1]);
}
}
cout<<dp[n+m][n+m]%mod<<endl;
}
return 0;
}

2019牛客多校第一场E ABBA dp的更多相关文章

  1. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  2. 2019牛客多校第一场 E-ABBA(dp)

    ABBA 题目传送门 解题思路 用dp[i][j]来表示前i+j个字符中,有i个A和j个B的合法情况个数.我们可以让前n个A作为AB的A,因为如果我们用后面的A作为AB的A,我们一定也可以让前面的A对 ...

  3. 2019牛客多校第一场E ABBA 贪心 + DP

    题意:问有多少个有(n + m)个A和(n + m)个B的字符串可以凑出n个AB和m个BA. 思路:首先贪心的发现,如果从前往后扫,遇到了一个A,优先把它看成AB的A,B同理.这个贪心策略用邻项交换很 ...

  4. 2019 牛客多校第一场 E ABBA

    题目链接:https://ac.nowcoder.com/acm/contest/881/E 题目大意 问有多少个由 (n + m) 个 ‘A’ 和 (n + m) 个 ‘B’,组成的字符串能被分割成 ...

  5. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  6. 2019牛客多校第一场A-Equivalent Prefixes

    Equivalent Prefixes 传送门 解题思路 先用单调栈求出两个序列中每一个数左边第一个小于自己的数的下标, 存入a[], b[].然后按照1~n的顺序循环,比较 a[i]和b[i]是否相 ...

  7. 2019牛客多校第一场 A.Equivalent Prefixes

    题目描述 Two arrays u and v each with m distinct elements are called equivalent if and only if RMQ(u,l,r ...

  8. 2019 牛客多校第一场 D Parity of Tuples

    题目链接:https://ac.nowcoder.com/acm/contest/881/D 看此博客之前请先参阅吕凯飞的论文<集合幂级数的性质与应用及其快速算法>,论文中很多符号会被本文 ...

  9. 【2019牛客多校第一场】XOR

    题意: 给你一个集合A,里边有n个正整数,对于所有A的.满足集合内元素异或和为0的子集S,问你∑|S| n<=1e5,元素<=1e18 首先可以转化问题,不求∑|S|,而是求每个元素属于子 ...

随机推荐

  1. http中长连接和websocket的长连接的区别

    一.什么是http协议 HTTP是一个应用层协议,无状态的,端口号为80.主要的版本有1.0/1.1/2.0.   HTTP/1.* 一次请求-响应,建立一个连接,用完关闭: HTTP/1.1 串行化 ...

  2. 错误 CS0234 命名空间“Microsoft”中不存在类型或命名空间名“Reporting”(是否缺少程序集引用?)

    VS2017 使用Microsoft Rdlc报表设计器出现以下错误: 错误 CS0234 命名空间“Microsoft”中不存在类型或命名空间名“Reporting”(是否缺少程序集引用?) 以及其 ...

  3. sqli-labs less-9 --> less-10

    时间盲注: 利用时间函数,观察不同条件的等待时长:利用sleep(),benchmark()等函数,让MySQL的执行时间变长 时间盲注多于if这样的函数结合(if(expr1,expr2,expr3 ...

  4. 2020牛客寒假算法基础集训营6 E.立方数(唯一分解定理 素数筛)

    https://ac.nowcoder.com/acm/contest/3007/E 放下题解 #include<bits/stdc++.h> using namespace std; t ...

  5. 【LInux01】学习Linux课程体系

    知识 =>技能   需要大量的练习  相当于复盘 要有成就感 在一个领域深挖,再迁移到其他领域 1.两周以后的知识留存率: 主动学习: 动手实践:40% 讲给别人听:70% 写博客:是写教程,便 ...

  6. MCPS & MIPS

    MIPS:Million Instructions Per Second MCPS:Million Cycles Per Second MIPS = Total Instructions*Sampli ...

  7. hadoop 部署在centos 7 上

    一.准备工作  (文章写于 2019-6) 根据官方文档而来,请注意时间,官方可能有更新,以官方文档为准 1. 配置网站参考: http://hadoop.apache.org/docs/r1.0.4 ...

  8. Vim入门——Windows下安装

    下载页面:https://www.vim.org/download.php Windows选用的是MS-Windows: 下图为展示: 因为最近被墙,镜像貌似没中国内陆地区,因此,选择使用GitHub ...

  9. ReviewBoard使用:添加SVN

    1.登录ReviewBoard,选择“Admin” 2.选择 “Repositores”,点击按钮“Add” 3.填写内容,然后点击按钮“SAVE”保存 Name:仓库名称(自己随意写) Hostin ...

  10. android 直接添加一个Fragment到activity,不需要额外setContentView

    getSupportFragmentManager().beginTransaction().replace(android.R.id.content,new ArticleListFragment( ...