洛谷 1063 dp 区间dp
#洛谷 1063 dp 区间dp
感觉做完这道提高组T1的题之后,受到了深深的碾压,,最近各种不在状态。。

初看这道题,不难发现它具有区间可并性,即(i, j)的最大值可以由(i, k) 与 (k+1, j)得到。考虑使用区间dp
题目中项链为环形,所以在2 * n的区间上进行操作
设dp[i][j],表示区间(i, j) 的最大值 转移为
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j] + pre[i] * succ[k] * succ[j]);
老久没写区间dp题目了,各种手生,开了3倍的空间,在枚举i的时候只枚举了一个n的区间,导致多次错解
丑哭的代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
const int maxn = 800 + 10;
int dp[maxn][maxn];
int pre[maxn], succ[maxn];
int n;
int main () {
freopen("energy.in", "r", stdin);
freopen("energy.out", "w", stdout);
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &pre[i]);
succ[i-1] = pre[i];
}
succ[n] = pre[1];
memcpy(&pre[n + 1], &pre[1], sizeof(int) * n);
memcpy(&succ[n + 1], &succ[1], sizeof(int) * n);
memcpy(&pre[2 * n + 1], &pre[1], sizeof(int) * n);
memcpy(&succ[2 * n + 1], &succ[1], sizeof(int) * n);
// for (int i = 1; i <= 3 * n; i++) printf("pre[%d] = %d\n", i, pre[i]);
// for (int i = 1; i <= 3 * n; i++) printf("succ[%d] = %d\n", i, succ[i]);
for (int j = 1; j < n; j++) {
for (int i = n + 1; i <= 3 * n; i++) {
for (int k = i; k < i + j; k++)
dp[i][i+j] = std :: max(dp[i][i+j], dp[i][k] + dp[k + 1][i + j] + pre[i] * succ[k] * succ[i + j]);
}
}
//for (int i = n + 1; i <= 2 * n; i++)
// for (int j = i; j <= i + n - 1; j++) {
// printf("dp[%d][%d] = %d\n", i, j, dp[i][j]);
// }
int ans = 0;
for (int i = n + 1; i <= 3 * n; i++) {
ans = std :: max(ans, dp[i][i + n - 1]);
}
printf("%d", ans);
return 0;
}
洛谷 1063 dp 区间dp的更多相关文章
- 洛谷P3205合唱队——区间DP
题目:https://www.luogu.org/problemnew/show/P3205 枚举点,分类为上一个区间的左端点或右端点,满足条件便+=即可: 注意不要重复(当l=2时). 代码如下: ...
- 洛谷1220(区间dp)
要点 处于什么位置的题常用一个套路就是搞完\([l,r]\)以后处于0(l)或1(r)的状态,即\(dp[i][j][0/1]\). 对于此题dp意义为已经搞完\([l,r]\)的时最小的已耗电能,转 ...
- BZOJ5259/洛谷P4747: [Cerc2017]区间
BZOJ5259/洛谷P4747: [Cerc2017]区间 2019.8.5 [HZOI]NOIP模拟测试13 C.优美序列 思维好题,然而当成NOIP模拟题↑真的好吗... 洛谷和BZOJ都有,就 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
- 洛谷1063 +区间dp(经典问题)
题目网址:https://www.luogu.com.cn/problem/P1063 题意大致是:给定一个序列An,第i个元组表示为(Ai,Ai+1),序列位置不变,当合并一个区间[l,l+1]时开 ...
- 洛谷P3928 Sequence2(dp,线段树)
题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...
- 洛谷 P2657 (数位DP)
### 洛谷 P2657 题目链接 ### 题目大意:给你一个数的范围 [A,B] ,问你这段区间内,有几个数满足如下条件: 1.两个相邻数位上的数的差值至少为 2 . 2.不包含前导零. 很简单的数 ...
- 洛谷 P4124 (数位 DP)
### 洛谷 P4124 题目链接 ### 题目大意: 给你一段区间,让你求满足下列两个条件时的数的个数. 1.至少有 3 个相邻相同数字 (即 111 .1111 .222 等) 2.不能同时出现 ...
- 洛谷 P4999(数位DP)
###洛谷 P4999 题目链接 ### 题目大意:给你一个区间,求这段区间中所有数的,数位上的,数字之和. 分析: 这题与 洛谷 P2602 相似,稍微改一下就可以了. 求出 0 ~ 9 的个数,然 ...
随机推荐
- Sping面试题分析
1.开放中主要使用Spring的什么技术? (1)IOC容器管理各层的组件 (2) 使用AOP配置声明式事务 (3)整合其他框架 2简述AOP和IOC概念 AOP : Aspect Orienten ...
- WebStorm 6.0 与 7.0 注册码
经测试 WebStorm 7均可以使用如下注册码,简直就是神key啊! WebStorm 6.0 与 7.0 注册码 User Name: EMBRACE License Key: ===== LIC ...
- BA-BACnet对象
BACNET协议有多少个对象呢,拿出西门子教程中的看看一下,居然有48个,其中的大部分都没有用到:
- 逆向学习XXclient怎样仅仅执行一个实例
个人觉得学习分两种, 一种是当面请教和直接从书本网络中的资料学习. 其二就是看着令你惊叹的作品-顿悟. 什么?顿悟不了?那我们就一起来逆向学习吧!差点忘了,我并不打算提供Demo,这并不重要,难道你打 ...
- 可编程数据平面将OpenFlow扩展至电信级应用(二)
可编程数据平面将OpenFlow扩展至电信级应用(二) 案例:基于WinPath网络处理器的电信极OpenFlow (CG-OF)client实现 作者:Liviu Pinchas, Tao Lang ...
- VM网络连接设置具体解释
參考http://zhidao.baidu.com/link? url=NU8UcLsp6CCgRZzeMgnb7v0p7Z78eLYloYW355Z9fQa__pm_lFBtpfSs61ZR2Wq2 ...
- php后期静态绑定
php后期静态绑定 自 PHP 5.3.0 起,PHP 增加了一个叫做后期静态绑定的功能,用于在继承范围内引用静态调用的类. 虽然也可以调用非静态方法,但是不会在运行时绑定. static 不再只是简 ...
- ubuntu16.04下配置caffe无GPU
1. 安装依赖项 1 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5- ...
- DB-MySQL:MySQL GROUP BY
ylbtech-DB-MySQL:MySQL GROUP BY 1.返回顶部 1. MySQL GROUP BY 语句 GROUP BY 语句根据一个或多个列对结果集进行分组. 在分组的列上我们可以使 ...
- Python学习历程之模块浅识
# =============================操作系统模块=======================# import os# 待续# ======================= ...