【BZOJ4487】【JSOI2015】染色问题
题意:
棋盘是一个n×m的矩形,分成n行m列共n*m个小方格。现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定:
1. 棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色。
2. 棋盘的每一行至少有一个小方格被染色。
3. 棋盘的每一列至少有一个小方格被染色。
4. 种颜色都在棋盘上出现至少一次。
以下是一些将3×3棋盘染成C = 3种颜色(红、黄、蓝)的例子:

请你求出满足要求的不同的染色方案总数。只要存在一个位置的颜色不同,即认为两个染色方案是不同的.
$1\leq n,m,c\leq 400$
题解:
这题。。。$O(nmc)$能过。。。没啥好说的
$ans=\sum\limits_{i=0}^{n}\sum\limits_{j=0}^{m}\sum\limits_{k=0}^{c}(-1)^{i+j+k}\binom{n}{i}\binom{m}{j}\binom{c}{k}(c-k+1)^{(n-i)(m-j)}$
没了。
代码:
//O(nmc) dafa good!
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
#define mod 1000000007
using namespace std;
typedef long long ll;
int n,m,c,ans=,C[][];
int fastpow(int x,int y){
int ret=;
for(;y;y>>=,x=(ll)x*x%mod){
if(y&)ret=(ll)ret*x%mod;
}
return ret;
}
void add(int &a,int b){
if(a+b>mod)a=a-mod+b;
else a=a+b;
}
void dec(int &a,int b){
if(a-b<)a=a-b+mod;
else a=a-b;
}
int main(){
//freopen("in.txt","r",stdin);
C[][]=C[][]=;
for(int i=;i<=;i++){
C[i][]=;
for(int j=;j<=i;j++){
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
}
scanf("%d%d%d",&n,&m,&c);
for(int k=;k<=c;k++){
int t3=,s=c-k+;
for(int i=n;i>=;i--){
int t2=;
for(int j=m;j>=;j--){
int t1=(ll)C[n][i]*C[m][j]%mod*C[c][k]%mod;
//int t2=fastpow(c-k+1,(n-i)*(m-j));
t1=(ll)t1*t2%mod;
if((i+j+k)&)ans=(ans-t1+mod)%mod;//dec(ans,t1);
else ans=(ans+t1)%mod;//add(ans,t1);
t2=(ll)t2*t3%mod;
}
t3=(ll)t3*s%mod;
}
}
printf("%d",ans);
return ;
}
【BZOJ4487】【JSOI2015】染色问题的更多相关文章
- BZOJ4487 [Jsoi2015]染色问题
BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...
- [bzoj4487][Jsoi2015]染色_容斥原理
染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- [BZOJ4487][JSOI2015]染色问题(容斥)
一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...
- BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)
逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...
- 【BZOJ4487】[JSOI2015]染色问题(容斥)
[BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...
- 【bzoj4487】[Jsoi2015]染色问题 容斥原理
题目描述 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 1. 棋盘的每一个小方格既可以染色(染成C种颜色中 ...
- 【BZOJ4487】[JSOI2015] 染色问题(高维容斥)
点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题 ...
- 【题解】JSOI2015染色问题
好像这个容斥还是明显的.一共有三个要求,可以用组合数先满足一个,再用容斥解决剩下的两个维.(反正这题数据范围这么小,随便乱搞都可以).用 \(a[k][i]\) 表示使用 \(k\) 种颜色,至少有 ...
随机推荐
- C++中static和const关键字的作用
static关键字至少有下列几个作用: 函数体内static变量的作用范围为该函数体,不同于auto变量,该变量的内存只被分配一次,因此其值在下次调用时仍维持上次的值: 在模块内的static全局变量 ...
- LeetCode(17)Letter Combinations of a Phone Number
题目如下: Python代码: class Solution(object): def letterCombinations(self, digits): """ :ty ...
- Day 01 计算机编程基础
1.编程语言是什么? 编程语言是人与计算机交流的介质 2.什么是编程? 用编程语言写出一个个文件,这堆文件会达到一个目的 3.编程有什么用? 让计算机帮助我们干活,从而解放人类劳动力 4.计算机组成原 ...
- sklearn学习8-----GridSearchCV(自动调参)
一.GridSearchCV介绍: 自动调参,适合小数据集.相当于写一堆循环,自己设定参数列表,一个一个试,找到最合适的参数.数据量大可以使用快速调优的方法-----坐标下降[贪心,拿当前对模型影响最 ...
- git diff详解
这篇文章很好很好 https://www.cnblogs.com/alfayed/p/4682780.html
- Vue学习之路第九篇:双向数据绑定 v-model指令
1.学习准备: ①:双向数据绑定可以简单理解为:后端定义的数据改变,前端页面展示的时候会自动改变,数据通过前端页面修改的时候,后端定义的数据内容也会随之改变. ②:指令中只有v-model可以实现双向 ...
- Vue学习之路第四篇:v-html指令
上一篇我们讲解了两种方式,把Vue对象的数据展示在页面上: 1.插值表达式 2.v-text指令 但是如果我们展示的数据包含元素标签或者样式,我们想展示标签或样式所定义的属性作用,该怎么进行渲染,比如 ...
- [LUOGU]P3701 主席树(假的)
有人恶意刷难度...就一个最大流模板... 但是题面吼啊2333 #include <iostream> #include <cstdio> #include <queu ...
- django-3-模板变量,过滤器,静态文件的引用
<<<模板变量>>> (1)定义视图函数 通过context传递参数来渲染模板,context要是个字典 当模板变量为可调用对象的时候,函数不传递参数 (2)配置模 ...
- centos7修改网卡名
http://blog.csdn.net/henulwj/article/details/47061023