The Bottom of a Graph

Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 1   Accepted Submission(s) : 1
Problem Description
We will use the following (standard) definitions from graph theory. Let
V be a nonempty and finite set, its elements being called vertices (or nodes). Let
E be a subset of the Cartesian product V×V, its elements being called edges. Then
G=(V,E) is called a directed graph.

Let n be a positive integer, and let p=(e1,...,en) be a sequence of length
n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices
(v1,...,vn+1). Then p is called a path from vertex
v1 to vertex vn+1 in G and we say that
vn+1 is reachable from v1, writing (v1→vn+1).

Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node
w in G that is reachable from v, v is also reachable from
w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,
bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
 
Input
The input contains several test cases, each of which corresponds to a directed graph
G. Each test case starts with an integer number v, denoting the number of vertices of
G=(V,E), where the vertices will be identified by the integer numbers in the set
V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer
e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that
(vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
 
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty
line.
 
Sample Input
3 3
1 3 2 3 3 1
2 1
1 2
0
 
Sample Output
1 3
2
#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 50010
struct node
{
int u,v;
int next;
}edge[MAX];
int low[MAX],dfn[MAX];
int sccno[MAX],head[MAX];
int scc_cnt,dfs_clock,cnt;
bool Instack[MAX];
int m,n;
stack<int>s;
vector<int>G[MAX];
vector<int>scc[MAX];
int in[MAX],out[MAX];
int num[MAX];
void init()
{
memset(head,-1,sizeof(head));
cnt=0;
}
void add(int u,int v)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void getmap()
{
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
}
}
void tarjan(int u,int fa)
{
int v;
low[u]=dfn[u]=++dfs_clock;
s.push(u);
Instack[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(Instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
for(;;)
{
v=s.top();
s.pop();
Instack[v]=false;
scc[scc_cnt].push_back(v);
sccno[v]=scc_cnt;
if(v==u) break;
}
}
}
void find(int l,int r)
{
memset(sccno,0,sizeof(sccno));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(Instack,false,sizeof(Instack));
dfs_clock=scc_cnt=0;
for(int i=l;i<=r;i++)
if(!dfn[i])
tarjan(i,-1);
}
void suodian()
{
for(int i=1;i<=scc_cnt;i++)
G[i].clear(),in[i]=out[i]=0;
for(int i=0;i<cnt;i++)
{
int u=sccno[edge[i].u];
int v=sccno[edge[i].v];
if(u!=v)
G[u].push_back(v),out[u]++,in[v]++;
}
}
void solve()
{
int ans=0;
int k=0;
for(int i=1;i<=scc_cnt;i++)
{
if(out[i]==0)
{
for(int j=0;j<scc[i].size();j++)
num[k++]=scc[i][j];
}
}
sort(num,num+k);
for(int i=0;i<k-1;i++)
printf("%d ",num[i]);
printf("%d\n",num[k-1]);
}
int main()
{
while(scanf("%d%d",&n,&m),n)
{
init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}

poj--2553--The Bottom of a Graph (scc+缩点)的更多相关文章

  1. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  2. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  3. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  4. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  5. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  6. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

  7. POJ 2553 The Bottom of a Graph 【scc tarjan】

    图论之强连通复习开始- - 题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点 思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不 ...

  8. poj 2553 The Bottom of a Graph : tarjan O(n) 存环中的点

    /** problem: http://poj.org/problem?id=2553 将所有出度为0环中的点排序输出即可. **/ #include<stdio.h> #include& ...

  9. poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)

    http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...

随机推荐

  1. SQLServer2008 关于数值字段列的累计

    create table #temp20110610(     id int identity(1,1),     date varchar(8),     qty float) insert int ...

  2. Android几种常见的多渠道(批量)打包方式介绍

    多渠道打包,主要是为了统计不同的渠道上包的下载数量,渠道越多,我们需要打的包数量越多,这个时候,我们没法去使用单纯的手动打包去一个一个的生成不同的渠道包,我们需要更高效的打包方式. 声明渠道方式一: ...

  3. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  4. **ML : ML中的最优化方法

    前言:         在机器学习方法中,若模型理解为决策模型,有些模型可以使用解析方法.不过更一般的对模型的求解使用优化的方法,更多的数据可以得到更多的精度.         AI中基于归纳的方法延 ...

  5. webpack核心提炼

    基本是学习的时候在网上整理的资料,并非自己原创,这篇文章的的主要目的是记录webpack.config.js的配置方式.可能也有不少错误,欢迎指正!! 一.应用场景 前端模块化开发.功能拓展.css预 ...

  6. PS CC2018 命令大全

    1.图像: 设置图像大小:图像->图像大小->设置宽高 约束比例: 解除约束比例: 2.设置大小像素图片不模糊: 双击当前图层->新建图层样式->输入名称->确定-> ...

  7. jsp 判断当前时间是否符合设置的时间条件

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  8. 11.【Linq】

    11.2.4  Cast . OfType 和显式类型的范围变量 这两个操作符很相似:都可以处理任意非类型化的序列(它们是非泛型 IEnumerable 类的扩展方法),并返回强类型的序列. Cast ...

  9. [基准测试]----lmbench

    引言 要评价一个系统的性能,通常有不同的指标,相应的会有不同的测试方法和测试工具,一般来说为了确保测试结果的公平和权威性,会选用比较成熟的商业测试软件.但在特定情形下,只是想要简单比较不同系统或比较一 ...

  10. codeforces 467C George and Job(简单dp,看了题解抄一遍)

    题目 参考了网页:http://www.xue163.com/exploit/180/1802901.html //看了题解,抄了一遍,眼熟一下,增加一点熟练度 //dp[i][j]表示是前i个数选出 ...