poj--2553--The Bottom of a Graph (scc+缩点)
The Bottom of a Graph
Time Limit : 6000/3000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
V be a nonempty and finite set, its elements being called vertices (or nodes). Let
E be a subset of the Cartesian product V×V, its elements being called edges. Then
G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length
n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices
(v1,...,vn+1). Then p is called a path from vertex
v1 to vertex vn+1 in G and we say that
vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node
w in G that is reachable from v, v is also reachable from
w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,
bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
G. Each test case starts with an integer number v, denoting the number of vertices of
G=(V,E), where the vertices will be identified by the integer numbers in the set
V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer
e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that
(vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
line.

3 3
1 3 2 3 3 1
2 1
1 2
0
1 3
2#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 50010
struct node
{
int u,v;
int next;
}edge[MAX];
int low[MAX],dfn[MAX];
int sccno[MAX],head[MAX];
int scc_cnt,dfs_clock,cnt;
bool Instack[MAX];
int m,n;
stack<int>s;
vector<int>G[MAX];
vector<int>scc[MAX];
int in[MAX],out[MAX];
int num[MAX];
void init()
{
memset(head,-1,sizeof(head));
cnt=0;
}
void add(int u,int v)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void getmap()
{
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
}
}
void tarjan(int u,int fa)
{
int v;
low[u]=dfn[u]=++dfs_clock;
s.push(u);
Instack[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(Instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
for(;;)
{
v=s.top();
s.pop();
Instack[v]=false;
scc[scc_cnt].push_back(v);
sccno[v]=scc_cnt;
if(v==u) break;
}
}
}
void find(int l,int r)
{
memset(sccno,0,sizeof(sccno));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(Instack,false,sizeof(Instack));
dfs_clock=scc_cnt=0;
for(int i=l;i<=r;i++)
if(!dfn[i])
tarjan(i,-1);
}
void suodian()
{
for(int i=1;i<=scc_cnt;i++)
G[i].clear(),in[i]=out[i]=0;
for(int i=0;i<cnt;i++)
{
int u=sccno[edge[i].u];
int v=sccno[edge[i].v];
if(u!=v)
G[u].push_back(v),out[u]++,in[v]++;
}
}
void solve()
{
int ans=0;
int k=0;
for(int i=1;i<=scc_cnt;i++)
{
if(out[i]==0)
{
for(int j=0;j<scc[i].size();j++)
num[k++]=scc[i][j];
}
}
sort(num,num+k);
for(int i=0;i<k-1;i++)
printf("%d ",num[i]);
printf("%d\n",num[k-1]);
}
int main()
{
while(scanf("%d%d",&n,&m),n)
{
init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}
poj--2553--The Bottom of a Graph (scc+缩点)的更多相关文章
- POJ 2553 The Bottom of a Graph(强连通分量)
POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...
- poj 2553 The Bottom of a Graph(强连通分量+缩点)
题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K ...
- poj 2553 The Bottom of a Graph【强连通分量求汇点个数】
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: ...
- POJ 2553 The Bottom of a Graph (强连通分量)
题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...
- POJ 2553 The Bottom of a Graph (Tarjan)
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11981 Accepted: ...
- POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)
Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...
- POJ 2553 The Bottom of a Graph 【scc tarjan】
图论之强连通复习开始- - 题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点 思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不 ...
- poj 2553 The Bottom of a Graph : tarjan O(n) 存环中的点
/** problem: http://poj.org/problem?id=2553 将所有出度为0环中的点排序输出即可. **/ #include<stdio.h> #include& ...
- poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)
http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...
随机推荐
- cookie/session在nodes中的实战
cookie 和 session 众所周知,HTTP 是一个无状态协议,所以客户端每次发出请求时,下一次请求无法得知上一次请求所包含的状态数据,如何能把一个用户的状态数据关联起来呢? 比如在淘宝的某个 ...
- WEB笔记-让HTML5向下兼容的策略
//给新标签增加块级元素声明 article,aside,dialog,figure,fotter,header,legend,nav,section{display:block} //添加css兹瓷 ...
- Centos6.6 安装Redis
一.介绍 redis在做数据库缓存,session存储,消息队列上用的比较多 二.安装 $ yum install -y wget gcc make tcl $ wget http://downloa ...
- jq 替换DOM layeui 不刷新
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- <转>c++引用与指针的区别(着重理解)
★ 相同点: 1. 都是地址的概念: 指针指向一块内存,它的内容是所指内存的地址:引用是某块内存的别名. ★ 区别: 1. 指针是一个实体,而引用仅是个别名: 2. 引用使用时无需解引用(*),指 ...
- js开发性能(一)
随着js技术的发展,性能问题开始被越来越多的人关注,最近了解了一些关于前端性能的问题,这里主要讨论一下在js脚本加载和执行的过程中,我们应该怎么样来提高js的性能. js脚本的处理 初学前端的时候,我 ...
- 连接mysql时遇到的问题
1.报错:The server time zone value '???ú±ê×??±??' is unrecognized or represents 解决方法:在jdbc连接的url后面加上ser ...
- 【剑指Offer】42、和为S的两个数字
题目描述: 输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的. 输出描述: 对应每个测试案例,输出两个数, ...
- 【Leetcode】【简单】【169求众数】【JavaScript】
题目 169. 求众数 给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [ ...
- Linux思维导图之进程管理
查漏补缺,理解概念,及时总结,欢迎拍砖.