BZOJ3672: [Noi2014]购票(CDQ分治,点分治)
Description
Input
第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到)。输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市。其中第 v 行包含 5 个非负整数 f_v,s_v,p_v,q_v,l_v,分别表示城市 v 的父亲城市,它到父亲城市道路的长度,票价的两个参数和距离限制。请注意:输入不包含编号为 1 的SZ市,第 2 行到第 n 行分别描述的是城市 2 到城市 n。
Output
输出包含 n-1 行,每行包含一个整数。其中第 v 行表示从城市 v+1 出发,到达SZ市最少的购票费用。同样请注意:输出不包含编号为 1 的SZ市。
Sample Input
1 2 20 0 3
1 5 10 100 5
2 4 10 10 10
2 9 1 100 10
3 5 20 100 10
4 4 20 0 10
Sample Output
150
70
149
300
150
解题思路:
这道题的状态转移方程非常好列,Dp[i]=min(Dp[anc[i]]+p*disi,anc[i]+q)
这个可以斜率优化我就不说了。
像序列上的CDQ,先处理左半部分更新右半部分。
主要是先处理i到根的所有节点Dp值来更新重心i,再将更深的子树内按照失效大小排序,就可以不断地实现加点单调栈维护凸包。
注意加根反着加,所以要将x轴反过来(当然你递归处理的话就用不着了)
注意inf要足够大。
注意要动态更新答案,防止优秀点失效。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long lnt;
const int N=;
const double eps=1e-;
struct pnt{
int no;
int hd;
int fa;
int wgt;
lnt f,dis,p,q,l;
bool vis;
double x(void){return dis;}
double y(void){return f;}
double k(void){return p;}
}p[N];
struct ent{
int twd;
int lst;
lnt vls;
}e[N<<];
int n,m;
int cnt;
int toa;
int tob;
int top;
int root;
int size;
int maxsize;
int sta[N];
int stb[N];
int stack[N];
bool cmp(int a,int b)
{
return p[a].dis-p[a].l>p[b].dis-p[b].l;
}
double K(int a,int b)
{
return (double)(p[a].y()-p[b].y())/(double)(p[a].x()-p[b].x());
}
void ade(int f,int t,lnt v)
{
cnt++;
e[cnt].twd=t;
e[cnt].lst=p[f].hd;
e[cnt].vls=v;
p[f].hd=cnt;
return ;
}
void grc_dfs(int x,int f)
{
p[x].wgt=;
int maxs=-;
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(to==f||p[to].vis)
continue;
grc_dfs(to,x);
p[x].wgt+=p[to].wgt;
if(maxs<p[to].wgt)
maxs=p[to].wgt;
}
if(maxs<size-p[x].wgt)
maxs=size-p[x].wgt;
if(maxs<maxsize)
{
root=x;
maxsize=maxs;
}
return ;
}
void get_ans(int x)
{
if(!top)
return ;
int l=,r=top-;
int y=stack[top];
while(l<=r)
{
int mid=(l+r)>>;
if(K(stack[mid],stack[mid+])<p[x].k())
r=mid-,y=stack[mid];
else
l=mid+;
}
p[x].f=std::min(p[x].f,p[y].f+(p[x].dis-p[y].dis)*p[x].p+p[x].q);
return ;
}
void Insert(int x,int f)
{
stb[++tob]=x;
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(to==f||p[to].vis)
continue;
Insert(to,x);
}
return ;
}
void CDQ(int x)
{
int rt;
root=;
size=p[x].wgt;
maxsize=0x3f3f3f3f;
grc_dfs(x,x);
rt=root;
p[rt].vis=true;
if(rt!=x)
{
p[x].wgt-=p[rt].wgt;
CDQ(x);
}
toa=tob=top=;
sta[++toa]=rt;
for(int i=rt;i!=x;i=p[i].fa)
{
if(p[rt].dis-p[p[i].fa].dis<=p[rt].l)
p[rt].f=std::min(p[rt].f,p[p[i].fa].f+(p[rt].dis-p[p[i].fa].dis)*p[rt].p+p[rt].q);
sta[++toa]=p[i].fa;
}
for(int i=p[rt].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].vis)
continue;
Insert(to,to);
}
std::sort(stb+,stb+tob+,cmp);
int j=;
for(int i=;i<=toa;i++)
{
while(j<=tob&&p[stb[j]].dis-p[sta[i]].dis>p[stb[j]].l)
get_ans(stb[j++]);
while(top>&&K(stack[top-],stack[top])<=K(stack[top],sta[i]))
top--;
stack[++top]=sta[i];
}
while(j<=tob)
get_ans(stb[j++]);
for(int i=p[rt].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].vis)
continue;
CDQ(to);
}
return ;
}
void dis_measure(int x,int f)
{
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(to==f)
continue;
p[to].dis=p[x].dis+e[i].vls;
dis_measure(to,x);
}
return ;
}
int main()
{
p[].f=0x3f3f3f3f3f3f3f3fll;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
p[i].no=i;
p[i].f=0x3f3f3f3f3f3f3f3fll;
lnt tmp;
scanf("%d%lld%lld%lld%lld",&p[i].fa,&tmp,&p[i].p,&p[i].q,&p[i].l);
ade(i,p[i].fa,tmp);
ade(p[i].fa,i,tmp);
}
dis_measure(,);
p[].fa=;
p[].wgt=n;
CDQ();
for(int i=;i<=n;i++)
printf("%lld\n",p[i].f);
return ;
}
BZOJ3672: [Noi2014]购票(CDQ分治,点分治)的更多相关文章
- [BZOJ3672][Noi2014]购票 斜率优化+点分治+cdq分治
3672: [Noi2014]购票 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1749 Solved: 885[Submit][Status][ ...
- bzoj千题计划251:bzoj3672: [Noi2014]购票
http://www.lydsy.com/JudgeOnline/problem.php?id=3672 法一:线段树维护可持久化单调队列维护凸包 斜率优化DP 设dp[i] 表示i号点到根节点的最少 ...
- BZOJ3672: [Noi2014]购票【CDQ分治】【点分治】【斜率优化DP】
Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的 ...
- BZOJ3672 [Noi2014]购票 【点分治 + 斜率优化】
题目链接 BZOJ3672 题解 如果暂时不管\(l[i]\)的限制,并假使这是一条链 设\(f[i]\)表示\(i\)节点的最优答案,我们容易得到\(dp\)方程 \[f[i] = min\{f[j ...
- BZOJ3672: [Noi2014]购票(dp 斜率优化 点分治 二分 凸包)
题意 题目链接 Sol 介绍一种神奇的点分治的做法 啥?这都有根树了怎么点分治?? 嘿嘿,这道题的点分治不同于一般的点分治.正常的点分治思路大概是先统计过重心的,再递归下去 实际上一般的点分治与统计顺 ...
- BZOJ3672 : [Noi2014]购票
设d[i]表示i到1的距离 f[i]=w[i]+min(f[j]+(d[i]-d[j])*v[i])=w[i]+d[i]*v[i]+min(-d[j]*v[i]+f[j]) 对这棵树进行点分治,每次递 ...
- bzoj3672: [Noi2014]购票(树形DP+斜率优化+可持久化凸包)
这题的加强版,多了一个$l_i$的限制,少了一个$p_i$的单调性,难了好多... 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ $\frac {f(j) ...
- 【BZOJ3672】[Noi2014]购票 树分治+斜率优化
[BZOJ3672][Noi2014]购票 Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. ...
- 【BZOJ 3672】 3672: [Noi2014]购票 (CDQ分治+点分治+斜率优化)**
3672: [Noi2014]购票 Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国 ...
随机推荐
- java音乐播放之IO流处理
这个类仅仅能一直播放.知道音乐结束. 比AudioCilp要好一点. import java.io.*; import javax.sound.sampled.*; public class Test ...
- Highcharts图表插件的简单使用说明
Highcharts图表控件是眼下使用最为广泛的图表控件.本文将从零開始逐步为你介绍Highcharts图表控件. 通过本文.你将学会怎样配置Highcharts以及动态生成Highchart图表. ...
- UML之序列图
一 序列图概述: 序列图主要用于展示对象之间交互的顺序. 序列图将交互关系表示为一个二维图.纵向是时间轴,时间沿竖线向下延伸. 横向轴代表了在协作中各独立对象的类元角色.类元角色用生命线表示.当对象存 ...
- Java定时器TimeTask
package com.alan.timer; import java.util.Calendar;import java.util.Date;import java.util.Timer;impor ...
- nyoj--19--擅长排列的小明(dfs)
擅长排列的小明 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 小明十分聪明,而且十分擅长排列计算.比如给小明一个数字5,他能立刻给出1-5按字典序的全排列,如果你想为难 ...
- HDU 4372 Count the Buildings 组合数学
题意:有n个点上可能有楼房,从前面可以看到x栋楼,从后面可以看到y栋,问楼的位置有多少种可能. 印象中好像做过这个题,
- K-序列(埃森哲杯第十六届上海大学程序设计联赛春季赛暨上海高校金马五校赛)
题目描述 给一个数组 a,长度为 n,若某个子序列中的和为 K 的倍数,那么这个序列被称为“K 序列”.现在要你 对数组 a 求出最长的子序列的长度,满足这个序列是 K 序列. 输入描述: 第一行为 ...
- 【Henu ACM Round#14 B】Duff in Love
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 让你在n的因子里面找一个最大的数字x 且x的因子全都不是完全平方数(y^2,y>1) O(sqrt(n))找出n的所有因子. ...
- HDU1788 Chinese remainder theorem again【中国剩余定理】
题目链接: pid=1788">http://acm.hdu.edu.cn/showproblem.php?pid=1788 题目大意: 题眼下边的描写叙述是多余的... 一个正整N除 ...
- 详解Android插件化开发-资源访问
动态加载技术(也叫插件化技术),当项目越来越庞大的时候,我们通过插件化开发不仅可以减轻应用的内存和CPU占用,还可以实现热插拔,即在不发布新版本的情况下更新某些模块. 通常我们把安卓资源文件制 ...