POJ 2427 Smith's Problem Pell方程
题目链接 : http://poj.org/problem?id=2427
PELL方程几个学习的网址:
http://mathworld.wolfram.com/PellEquation.html wolfram的讲解
http://hi.baidu.com/aekdycoin/item/a45f7c37850e5b9db80c03d1 AC神的博客
http://blog.csdn.net/acdreamers/article/details/8529686 acdreamer的博客 (从这里知道的思路...
Pell方程 : 形如 X2 - D*Y2 = 1 的式子我们称作Pell方程 (D为正整数)
Pell方程的推广形式 : 形如A*X2 - B*Y2 = C 的式子我们称作Pell方程的推广 (其中 A,B,C均为正整数)
本题是Pell方程的最小根
按照Pell方程连分数解法的定义 , 只需要求出sqrt(N)的连分数即可
于是我苦翻了一天数论书看懂了连分数的性质...公式在初等数论及其应用 P370
所以我们只需要一直求连分数sqrt(N)的 收敛子p/q p,q就是最后我们要求的答案
但是这题不需要化成连分数的向量形式即 [a1;a2,a3...] , 因为double精度误差很大,BigDecimal很不方便 而且 找循环节很复杂
这题只需要用下面的定理即可 ...本题中 P0 = 0,Q0 = 1 ,这里因为求出Pk,Qk会非常大 , 所以用Java的BigInteger实现更方便
import java.util.*;
import java.io.BufferedInputStream;
import java.math.*;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
while(cin.hasNext()){
int n = cin.nextInt();
double p = Math.sqrt(n);
int k = (int)p;
if(k == p) {
System.out.println("No solution!");
continue;
}else {
/*
* 逐项求 sqrt(D) 的连分数 用p/q表示
* 公式在初等数论及其应用P370
*/
BigInteger x = BigInteger.ONE; //p
BigInteger y = BigInteger.ONE; //q
BigInteger a,N,P1,Q1,P2,Q2,ak,p1,q1,p2,q2;
q1 = p2 = P1 = BigInteger.ZERO;
p1 = q2 = Q1 = BigInteger.ONE;
N = BigInteger.valueOf(n); // N = n;
a = BigInteger.valueOf(k); // a = [sqrt(n)]
ak = a; //ak
while(!x.multiply(x).subtract(N.multiply(y).multiply(y)).equals(BigInteger.ONE)){
x = ak.multiply(p1).add(p2); // p[k] = ak * p[k-1] + p[k-2]
y = ak.multiply(q1).add(q2); // q[k] = ak * q[k-1] + q[k-2]
P2 = ak.multiply(Q1).subtract(P1); //P2=P[k+1];
Q2 = N.subtract(P2.multiply(P2)).divide(Q1); //Q2=Q[k+1];
ak = P2.add(a).divide(Q2); //ak P1 = P2;
Q1 = Q2; p2 = p1;
p1 = x;
q2 = q1;
q1 = y;
}
System.out.println(x+" "+y);
}
}
}
}
POJ 2427 Smith's Problem Pell方程的更多相关文章
- POJ 1320 Street Numbers Pell方程
http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b 要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...
- hdu3293(pell方程+快速幂)
裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others) Memory Limit: ...
- Pell方程及其一般形式
一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...
- POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)
POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...
- POJ 1320 Street Numbers 解佩尔方程
传送门 Street Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2529 Accepted: 140 ...
- POJ 3468.A Simple Problem with Integers-线段树(成段增减、区间查询求和)
POJ 3468.A Simple Problem with Integers 这个题就是成段的增减以及区间查询求和操作. 代码: #include<iostream> #include& ...
- poj 3468 A Simple Problem with Integers 【线段树-成段更新】
题目:id=3468" target="_blank">poj 3468 A Simple Problem with Integers 题意:给出n个数.两种操作 ...
- 线段树(成段更新) POJ 3468 A Simple Problem with Integers
题目传送门 /* 线段树-成段更新:裸题,成段增减,区间求和 注意:开long long:) */ #include <cstdio> #include <iostream> ...
- POJ 1152 An Easy Problem! (取模运算性质)
题目链接:POJ 1152 An Easy Problem! 题意:求一个N进制的数R.保证R能被(N-1)整除时最小的N. 第一反应是暴力.N的大小0到62.发现当中将N进制话成10进制时,数据会溢 ...
随机推荐
- 如何卸载visualsvn for visual studio
新入职的公司,电脑上的visual studio已经安装了visualsvn 尝试在tools-->extensions and updates中卸载 但是uninstall按钮是被禁用掉的 谷 ...
- js插件---图片懒加载lazyload
js插件---图片懒加载lazyload 一.总结 一句话总结:使用异常简单,src里面放加载的图片,data-original里面放原图片,不懂的位置去官网或者github找API就好. 1.laz ...
- CentOS 与Ubuntu 安装软件包的对比
工作需要开始转向centos,简单记录软件包安装 wget不是安装方式 他是一种下载软件类似与迅雷 如果要下载一个软件 我们可以直接 wget 下载地址 ap-get是ubuntu下的一个软件安装方式 ...
- 判断DataGridView滚动条是否滚动到当前已加载的数据行底部
private void dataGridView1_Scroll(object sender, ScrollEventArgs e) { if (e.ScrollOrientation == S ...
- 添加使用session回话属性
@SessionAttributes("nowUser") nowUser :id/userName/password public String delectMsg(int id ...
- Android控件-单选按钮RadioButton
RadioGroup单选按钮用法,还是先看效果图 先中后,点RadioGroup测试按钮,可在标题栏显示选择结果,点清除可以清除选择.下面上代码,main.xml: <RadioGroup an ...
- codeforces 701 B. Cells Not Under Attack
B. Cells Not Under Attack time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Redis的安装与启动(doc和本地客户端)
官网 安装都是老生长谈了(这个也不错),这里推荐俩个文章看看把.:打开一个cmd窗口 使用cd命令切换目录到 C:\redis 运行 redis-server.exe redis.conf(安装的关键 ...
- $_FILES参数详解及简单<form>表单无刷新上传文件
$_FILES:经由 HTTP POST 文件上传而提交至脚本的变量,类似于旧数组$HTTP_POST_FILES 数组(依然有效,但反对使用)详细信息可参阅 POST方法上传 $_FILES数组内容 ...
- Flex3中addEventListener()方法使用详解
Flex控件对象.RemoteObject等都有一个共同的方法addEventListener. 方法详细信息: 来源于:flash.events.EventDispatcher类 addEventL ...